20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954 | class RedCorr(object):
"""
Reddening correction
RC = RedCorr()
"""
##
# @todo Manage error in extinction
# @todo print extinction laws with references
def __init__(self, E_BV=0., R_V=3.1, law='No correction', cHbeta=None,
UserFunction=None):
"""
Reddening correction tool.
Parameters:
E_BV [float]: differential extinction between bands B and V
R_V = AV/E_BV. Default value is 3.1
law [str]: one of the defined laws (available with RedCorr.getLaws())
cHbeta: logarithmic extinction at Hbeta (prevalence on E_BV)
UserFunction X(wave, param): A user-defined function that accept 2 parameters: wavelength(s) in Angstrom
and an optional parameter and return X(lambda) = A(lambda)/E_BV = R.A(lambda)/AV.
The correction is: 10**(0.4*E_bv*X)
**Usage:**
RC = RedCorr(E_BV = 1.)
RC.plot(laws = 'all')
def my_X(wave, params = [5000., 1., 2., 3.]):
\"""
Description of the user defined law
\"""
return params[1] * (wave/params[0]) + params[2] * (wave/params[0])**-1 + params[3] * (wave/params[0])**-2
RC.UserFunction = my_X
RC.UserParams = [6000., 0., 0., 1.]
RC.getCorr(5007)
"""
self.log_ = pn.log_
self.calling = 'RedCorr'
self._laws_dict = {} # dictionary pointing to a reddening function depending on the key
self._laws_dict['No correction'] = self._zeros
self._laws_dict['CCM89'] = self._CCM89
self._laws_dict['CCM89 Bal07'] = self._CCM89_Bal07
self._laws_dict['CCM89 oD94'] = self._CCM89_oD94
self._laws_dict['S79 H83 CCM89'] = self._S79_H83_CCM89
#self._laws_dict['GCC 09'] = self._GCC09
self._laws_dict['K76'] = self._K76
self._laws_dict['SM79 Gal'] = self._SM79_Gal
self._laws_dict['G03 LMC'] = self._G03_LMC
self._laws_dict['MCC99 FM90 LMC'] = self._MCC99_FM90_LMC
self._laws_dict['F99-like'] = self._F99_like
#self._laws_dict['F99-like IDL'] = self._F99_like_IDL
self._laws_dict['F99'] = self._F99
self._laws_dict['F88 F99 LMC'] = self._FM88_F99_LMC
self._laws_dict['Cal00'] = self._Cal00
self.UserFunction = UserFunction
self.UserParams = None
self.FitzParams = None
self._given = None
self.law = law
self.R_V = R_V
if cHbeta is not None:
self._given = 'cHbeta'
self.cHbeta = cHbeta
else:
self._given = 'E_BV'
self.E_BV = E_BV
def cHbetaFromEbv(self, ebv):
"""
Return cHbeta from E(BV)
Parameter:
ebv: E(B-V)
**Usage:**
(1-f_lambda).cHbeta = 0.4.EBV.X_lambda applied to lambda = 4861, with f_beta = 0.:
cHbeta = 0.4 . EBV . X_beta
"""
Xbeta = self.X(pn.CST.HBETA)
return 0.4 * ebv * Xbeta
#return np.asarray((-0.61 + (0.61 ** 2 + 4 * 0.024 * ebv) ** 0.5) / (2 * 0.024))
def EbvFromCHbeta(self, cHbeta):
"""
Return E(B-V) from cHbeta
Parameter:
cHbeta: -
Using:
(1-f_lambda).cHbeta = 0.4.EBV.X_lambda applied to lambda = 4861,
with f_beta = 0.:
cHbeta = 0.4 . EBV . X_beta
"""
Xbeta = self.X(pn.CST.HBETA)
if Xbeta != 0.:
return cHbeta * 2.5 / Xbeta
else:
return np.zeros_like(cHbeta)
#return np.asarray(0.61 * cHbeta + 0.024 * cHbeta ** 2.)
def getLaws(self):
"""
Return the dictionary keys for the extinction laws
"""
return self._laws_dict.keys()
def printLaws(self):
"""
Print out the extinction laws
"""
for law in self._laws_dict.keys():
try:
doc = self._laws_dict[law].__doc__
except:
doc = ''
print("'{0}': {1}".format(law, doc))
def _get_e_bv(self):
return self.__E_BV
def _get_r_v(self):
return self.__R_V
def _get_law(self):
return self.__law
def _get_cHbeta(self):
return self.__cHbeta
def _get_AV(self):
return self.__AV
def _get_uf(self):
return self.__user_function
def _set_e_bv(self, value):
self.__E_BV = np.asarray(value)
self.__cHbeta = self.cHbetaFromEbv(self.__E_BV)
self.__AV = self.__E_BV * self.R_V
self._given = 'E_BV'
def _set_cHbeta(self, value):
self.__cHbeta = np.asarray(value)
self.__E_BV = self.EbvFromCHbeta(self.__cHbeta)
self.__AV = self.__E_BV * self.R_V
self._given = 'cHbeta'
def _set_AV(self, value):
self.__AV = np.asarray(value)
self.__E_BV = self.__AV / self.R_V
self.__cHbeta = self.cHbetaFromEbv(self.__E_BV)
self._given = 'AV'
def _set_r_v(self, value):
self.__R_V = np.asarray(value)
def _set_law(self, value):
if value not in self._laws_dict.keys():
self.log_.error('Unknown extinction law reference: {0}'.format(value), calling=self.calling)
self.__law = None
self.X = None
else:
self.__law = value
self.X = self._laws_dict[self.law]
if self._given == 'E_BV':
self.E_BV = self.E_BV
elif self._given == 'cHbeta':
self.cHbeta = self.cHbeta
elif self._given == 'AV':
self.AV = self.AV
def _set_uf(self, value):
self.__user_function = value
if value is None:
if 'user' in self._laws_dict:
del self._laws_dict['user']
else:
def _uf2(wave):
#This transform the user function with 2 parameters in a function of one single parameter
return np.asarray(self.__user_function(wave, self.UserParams))
_uf2.__doc__ = self.__user_function.__doc__
self._laws_dict['user'] = _uf2
E_BV = property(_get_e_bv, _set_e_bv, None, None)
R_V = property(_get_r_v, _set_r_v, None, None)
law = property(_get_law, _set_law, None, None)
cHbeta = property(_get_cHbeta, _set_cHbeta, None, None)
AV = property(_get_AV, _set_AV, None, None)
UserFunction = property(_get_uf, _set_uf, None, None)
def getCorr(self, wave, rel_wave=None):
"""
Return the extinction correction as:
correction = 10**(0.4 * EBV * Xx) = 10**(A_lambda / 2.5)
Parameters:
wave: wavelength (Angstrom)
rel_wave: wavelength (Angstrom) for a relative correction
**Usage:**
RC.getCorr(5007)
RC.getCorr(5007, 4861)
"""
if self.law is None:
self.log_.warn('No extinction law defined.', calling=self.calling)
return None
if self._laws_dict[self.law] is None:
self.log_.warn('No user defined extinction law.', calling=self.calling)
return None
else:
if rel_wave is None:
rel_corr = 1.
else:
rel_corr = self.getCorr(rel_wave)
X = self.X(wave)
return np.squeeze(10. ** (0.4 * np.outer(X, self.E_BV).reshape(X.shape + self.E_BV.shape))) / rel_corr
def getCorrHb(self, wave):
"""
Return the extinction correction normalized to the correction at 4861AA.
Parameter:
wave: wavelength (Angstrom)
"""
return self.getCorr(wave, np.ones_like(wave) * pn.CST.HBETA)
def getErrCorr(self, wave, err_E_BV, rel_wave=None):
"""
Return the error on the correction for a given wavelength, given the error on E(B-V)
Parameters:
wave: wavelength(s)
err_E_BV: error on E(B-V)
rel_wave: reference wavelength for the normalization (optional)
"""
if rel_wave is None:
rel_X = 0.
else:
rel_X = self.X(rel_wave)
return np.log(10) * abs(self.X(wave) - rel_X) * 0.4 * err_E_BV * self.E_BV
def getErrCorrHb(self, wave, err_E_BV):
"""
Return the the error on the correction relative to Hbeta for a given wavelength,
given the error on E(B-V)
Parameters:
wave: wavelength(s)
err_E_BV: error on E(B-V)
"""
return self.getErrCorr(self, wave, err_E_BV, rel_wave=pn.CST.HBETA)
def setCorr(self, obs_over_theo, wave1, wave2):
"""
Determination of the correction using the ratio of two observed line intensities
relative to the theoretical value.
Parameters:
obs_over_theo: ration of the observed ratio over the theoretical ratio
wave1: wavelengths at which the line rations are taken.
wave2: wavelengths at which the line rations are taken.
**Usage:**
rc.setCorr(6.5/2.85, 6563., 4861.)
"""
COR = RedCorr(E_BV= -2.5, R_V=self.R_V, law=self.law, UserFunction=self.UserFunction)
f1 = np.log10(COR.getCorr(wave1))
f2 = np.log10(COR.getCorr(wave2))
if f1 != f2:
with np.errstate(invalid='ignore'):
self.E_BV = 2.5 * np.log10(obs_over_theo) / (f1 - f2)
else:
self.E_BV = 0.
del COR
def plot(self, w_inf=1000., w_sup=10000., laws=None, ax=None, **kwargs):
"""
Plot extinction laws
Parameters:
w_inf [float]: lower limit of plot
w_sup [float]: upper limit of plot
laws [list of strings]: list of extinction law labels. If set to 'all', all the laws are plotted
ax : an axis object. If None, onr is created
**kwargs: arguments to plot
"""
if ax is None:
f, ax = plt.subplots()
colors = ['r', 'g', 'b', 'y', 'm', 'c']
styles = ['-', '--', '-.', ':']
if not pn.config.INSTALLED['plt']:
pn.log_.error('matplotlib.pyplot not available for plotting', calling=self.calling)
old_E_BV = self.E_BV
old_law = self.law
self.E_BV = 2.5
w = np.linspace(w_inf, w_sup, 1000)
if laws is None:
laws = self.law
elif laws == 'all':
laws = self.getLaws()
if type(laws) is str:
laws = [laws]
try:
# Python 3 returns laws as a set, no sorting then
laws.sort()
except:
pass
for i, law in enumerate(laws):
self.law = law
corr = self.getCorrHb(w)
if corr is not None:
ax.plot(w, np.log10(corr), label=law, c=colors[i % 6], linestyle=styles[i // 6], **kwargs)
ax.legend()
ax.set_xlabel('Wavelength (A)')
ax.set_ylabel('X')
self.law = old_law
self.E_BV = old_E_BV
def _CCM89(self, wave):
"""
Cardelli, Clayton & Mathis 1989, ApJ 345, 245
http://adsabs.harvard.edu/abs/1989ApJ...345..245C
Parameters:
wave: wavelength (Angstrom)
**Comments:**
Depends on R_V, default value being 3.1
Scope: Applicable to both dense and diffuse ISM
Range: UV through IR
"""
x = 1e4 / np.asarray([wave]) # inv microns
a = np.zeros_like(x)
b = np.zeros_like(x)
tt = (x > 0.3) & (x <= 1.1)
a[tt] = 0.574 * x[tt] ** 1.61
b[tt] = -0.527 * x[tt] ** 1.61
tt = (x > 1.1) & (x <= 3.3)
yg = x[tt] - 1.82
a[tt] = (1. + 0.17699 * yg - 0.50447 * yg ** 2. - 0.02427 * yg ** 3. + 0.72085 * yg ** 4. +
0.01979 * yg ** 5. - 0.7753 * yg ** 6. + 0.32999 * yg ** 7.)
b[tt] = (0. + 1.41338 * yg + 2.28305 * yg ** 2. + 1.07233 * yg ** 3. - 5.38434 * yg ** 4. -
0.622510 * yg ** 5. + 5.3026 * yg ** 6. - 2.09002 * yg ** 7.)
tt = (x > 3.3) & (x <= 5.9)
a[tt] = 1.752 - 0.316 * x[tt] - 0.104 / ((x[tt] - 4.67) ** 2. + 0.341)
b[tt] = -3.090 + 1.825 * x[tt] + 1.206 / ((x[tt] - 4.62) ** 2 + 0.263)
tt = (x > 5.9) & (x <= 8.0)
a[tt] = (1.752 - 0.316 * x[tt] - 0.104 / ((x[tt] - 4.67) ** 2. + 0.341) -
0.04473 * (x[tt] - 5.9) ** 2. - 0.009779 * (x[tt] - 5.9) ** 3.)
b[tt] = (-3.090 + 1.825 * x[tt] + 1.206 / ((x[tt] - 4.62) ** 2. + 0.263) +
0.2130 * (x[tt] - 5.9) ** 2. + 0.1207 * (x[tt] - 5.9) ** 3.)
tt = (x > 8.0) & (x < 10.0)
a[tt] = (-1.073 - 0.628 * (x[tt] - 8) + 0.137 * (x[tt] - 8) ** 2. -
0.070 * (x[tt] - 8) ** 3.)
b[tt] = (13.670 + 4.257 * (x[tt] - 8) - 0.420 * (x[tt] - 8) ** 2. +
0.374 * (x[tt] - 8) ** 3.)
Xx = self.R_V * a + b
return np.squeeze(Xx)
def _CCM89_Bal07(self, wave):
"""
Galactic extinction law based on Cardelli et al 1989, modified by Blagrave et al 2007
for 3.3 < x < 8 (1250 < lambda < 3030)
Blagrave et al 2007, ApJ, 655, 299
http://adsabs.harvard.edu/abs/2007ApJ...655..299B
Cardelli, Clayton & Mathis 1989, ApJ 345, 245
http://adsabs.harvard.edu/abs/1989ApJ...345..245C
Parameters:
wave: wavelength (Angstrom)
**Comments:**
Same as CCM89 for x<3.3 and x>8
Revised values for 3.3<x<8
Based on observation of Orion stars
Depends on R_V, default value being 3.1
Range: UV through IR
"""
x = 1e4 / np.asarray([wave]) # inv microns
a = np.zeros_like(x)
b = np.zeros_like(x)
tt = (x > 0.3) & (x <= 1.1)
a[tt] = 0.574 * x[tt] ** 1.61
b[tt] = -0.527 * x[tt] ** 1.61
tt = (x > 1.1) & (x <= 3.3)
yg = x[tt] - 1.82
a[tt] = (1. + 0.17699 * yg - 0.50447 * yg ** 2. - 0.02427 * yg ** 3. + 0.72085 * yg ** 4. +
0.01979 * yg ** 5. - 0.7753 * yg ** 6. + 0.32999 * yg ** 7.)
b[tt] = (0. + 1.41338 * yg + 2.28305 * yg ** 2. + 1.07233 * yg ** 3. - 5.38434 * yg ** 4. -
0.622510 * yg ** 5. + 5.3026 * yg ** 6. - 2.09002 * yg ** 7.)
tt = (x > 3.3) & (x <= 5.9)
a[tt] = 1.752 - 0.316 * x[tt] - 0.104 / ((x[tt] - 4.67) ** 2. + 0.341)
b[tt] = -2.9 + 1.825 * x[tt] + 0.93 / ((x[tt] - 4.65) ** 2 + 0.263)
tt = (x > 5.9) & (x <= 8.0)
a[tt] = (1.752 - 0.316 * x[tt] - 0.104 / ((x[tt] - 4.67) ** 2. + 0.341) -
0.04473 * (x[tt] - 5.9) ** 2. - 0.009779 * (x[tt] - 5.9) ** 3.)
b[tt] = (-2.9 + 1.825 * x[tt] + 0.93 / ((x[tt] - 4.65) ** 2 + 0.263) +
0.2130 * (x[tt] - 5.9) ** 2. + 0.1207 * (x[tt] - 5.9) ** 3.)
tt = (x > 8.0) & (x < 10.0)
a[tt] = (-1.073 - 0.628 * (x[tt] - 8) + 0.137 * (x[tt] - 8) ** 2. -
0.070 * (x[tt] - 8) ** 3.)
b[tt] = (13.670 + 4.257 * (x[tt] - 8) - 0.420 * (x[tt] - 8) ** 2. +
0.374 * (x[tt] - 8) ** 3.)
Xx = self.R_V * a + b
return np.squeeze(Xx)
def _CCM89_oD94(self, wave):
"""
Galactic extinction law based on Cardelli et al 1989, modified by O'Donnell 1994
for 1.1 < x < 3.3 (9100 < lambda < 3030)
O'Donnell 1994, ApJ, 422, 1580
http://adsabs.harvard.edu/abs/1994ApJ...422..158O
Cardelli, Clayton & Mathis 1989, ApJ 345, 245
http://adsabs.harvard.edu/abs/1989ApJ...345..245C
Parameters:
wave: wavelength (Angstrom)
**Comments:**
Same as CCM89 for x<1.1 and x>3.3
Revised values for 1.1<x<3.3
Produces lower correction in the near UV at low R_V
Scope: Galactic
Range: UV through IR
"""
x = 1e4 / np.asarray([wave]) # inv microns
a = np.zeros_like(x)
b = np.zeros_like(x)
tt = (x > 0.3) & (x <= 1.1)
a[tt] = 0.574 * x[tt] ** 1.61
b[tt] = -0.527 * x[tt] ** 1.61
tt = (x > 1.1) & (x <= 3.3)
yg = x[tt] - 1.82
a[tt] = (1. + 0.104 * yg - 0.609 * yg ** 2. + 0.701 * yg ** 3. + 1.137 * yg ** 4. -
1.718 * yg ** 5. - 0.827 * yg ** 6. + 1.647 * yg ** 7. - 0.505 * yg ** 8.)
b[tt] = (0. + 1.952 * yg + 2.908 * yg ** 2. - 3.989 * yg ** 3. - 7.985 * yg ** 4. +
11.102 * yg ** 5. + 5.491 * yg ** 6. - 10.805 * yg ** 7. + 3.347 * yg ** 8.)
tt = (x > 3.3) & (x <= 5.9)
a[tt] = 1.752 - 0.316 * x[tt] - 0.104 / ((x[tt] - 4.67) ** 2. + 0.341)
b[tt] = -3.090 + 1.825 * x[tt] + 1.206 / ((x[tt] - 4.62) ** 2 + 0.263)
tt = (x > 5.9) & (x <= 8.0)
a[tt] = (1.752 - 0.316 * x[tt] - 0.104 / ((x[tt] - 4.67) ** 2. + 0.341) -
0.04473 * (x[tt] - 5.9) ** 2. - 0.009779 * (x[tt] - 5.9) ** 3.)
b[tt] = (-3.090 + 1.825 * x[tt] + 1.206 / ((x[tt] - 4.62) ** 2. + 0.263) +
0.2130 * (x[tt] - 5.9) ** 2. + 0.1207 * (x[tt] - 5.9) ** 3.)
tt = (x > 8.0) & (x < 10.0)
a[tt] = (-1.073 - 0.628 * (x[tt] - 8) + 0.137 * (x[tt] - 8) ** 2. -
0.070 * (x[tt] - 8) ** 3.)
b[tt] = (13.670 + 4.257 * (x[tt] - 8) - 0.420 * (x[tt] - 8) ** 2. +
0.374 * (x[tt] - 8) ** 3.)
Xx = self.R_V * a + b
return np.squeeze(Xx)
def _S79_H83_CCM89(self, wave):
"""
Galactic extinction law (0-33000 A range):
- In the UV, from Seaton 1979
- In the opt/NIR (3600-9100) Howarth 1983
- In the FIR (9100-33000) Cardelly et al 1989
Seaton 1979, MNRAS, 187, 73) and
http://adsabs.harvard.edu/abs/1979MNRAS.187P..73S
Howarth 1983, MNRAS, 203, 301) Galactic law
http://adsabs.harvard.edu/abs/1983MNRAS.204.1091H
Cardelli, Clayton and Mathis 1989, ApJ, 345, 245
http://adsabs.harvard.edu/abs/1989ApJ...345..245C
Parameters:
wave: wavelength (Angstrom)
Scope: Galactic
Range: UV through IR
"""
x = 1e4 / np.asarray([wave]) # inv microns
Xx = np.zeros_like(x)
# Cardelli, Clayton & Mathis 1989 33000-9000
tt = (x > 0.3) & (x <= 1.1)
Xx[tt] = self.R_V * (0.574 * x[tt] ** 1.61) - 0.527 * x[tt] ** 1.61
# Howarth 1983, Galactic 9000-5000
tt = (x > 1.1) & (x <= 1.83)
Xx[tt] = (self.R_V - 3.1) + ((1.86 - 0.48 * x[tt]) * x[tt] - 0.1) * x[tt]
# Howarth 1983, Galactic 5000-3600
tt = (x > 1.83) & (x <= 2.75)
Xx[tt] = self.R_V + 2.56 * (x[tt] - 1.83) - 0.993 * ((x[tt] - 1.83) ** 2)
# Seaton 1979, Galactic
tt = (x > 2.75) & (x <= 3.65)
Xx[tt] = (self.R_V - 3.2) + 1.56 + 1.048 * x[tt] + 1.01 / (((x[tt] - 4.6) ** 2) + 0.280)
# Seaton 1979, Galactic
tt = (x > 3.65) & (x <= 7.14)
Xx[tt] = (self.R_V - 3.2) + 2.29 + 0.848 * x[tt] + 1.01 / (((x[tt] - 4.6) ** 2) + 0.280)
# Seaton 1979, Galactic
tt = (x > 7.14)
Xx[tt] = (self.R_V - 3.2) + 16.17 - 3.20 * x[tt] + 0.2975 * x[tt] ** 2
return np.squeeze(Xx)
# Removed from the code because it is most probably wrong
#def _GCC09(self, wave):
"""
Gordon, Cartledge & Clayton 2009, ApJ, 705, 1320
http://adsabs.harvard.edu/abs/2009ApJ...705.1320G
Comments:
Extinction function R.A(wave)/A(V)
R_V dependent
WARNING: This law seems buggy in the 2200AA region.
Scope:
UV
"""
"""
x = 1e4 / np.asarray([wave]) # inv microns
Xx = np.zeros_like(x)
tt = (x > 0.3) & (x <= 1.1)
Xx[tt] = (self.R_V * 0.574 - 0.527) * x[tt] ** 1.61
tt = (x > 1.1) & (x <= 3.3)
y = x[tt] - 1.82
a = 1 + y * (0.17699 + y * (-0.50447 + y * (-0.02427 + y * (0.72085 + \
y * (0.01979 + y * (-0.77530 + y * 0.32999))))))
b = y * (1.41338 + y * (2.28305 + y * (1.07233 + y * (-5.38434 + \
y * (-0.62251 + y * (5.30260 - y * 2.09002))))))
Xx[tt] = self.R_V * a + b
##
# @bug The coefficients are obviously not correct;
tt = (x > 3.3) & (x <= 5.9)
a = 1.896 - 0.372 * x[tt] - 0.0108 / ((x[tt] - 4.57) ** 2 + 0.0422)
b = -3.503 + 2.057 * x[tt] + 0.7180 / ((x[tt] - 4.59) ** 2 + 0.0530)
Xx[tt] = self.R_V * a + b
tt = (x > 5.9) & (x <= 11.0)
a = 1.896 - 0.372 * x[tt] - 0.0108 / ((x[tt] - 4.57) ** 2 + 0.0422)
b = -3.503 + 2.057 * x[tt] + 0.7180 / ((x[tt] - 4.59) ** 2 + 0.0530)
y = x[tt] - 5.9
a += -(0.110 + 0.0099 * y) * y ** 2
b += (0.537 + 0.0530 * y) * y ** 2
Xx[tt] = self.R_V * a + b
return np.squeeze(Xx)
"""
def _K76(self, wave):
"""
Kaler 1976, ApJS, 31, 517
http://adsabs.harvard.edu/abs/1976ApJS...31..517K
Comments:
This function returns the correction relative to Hbeta (f_lambda) and not
the extinction law (X(1/lambda)).
It cannot be used for absolute correction.
Range: 3000 to >20000
"""
w = np.asarray([wave]) # inv microns
if self.E_BV == 0.:
return np.ones_like(w)
f_tab = np.loadtxt(ROOT_DIR + '/extinction/Gal_Kaler.txt')
f = np.interp(w, f_tab[:, 0], f_tab[:, 1])
return np.squeeze(f * self.cHbeta / 0.4 / self.E_BV)
def _SM79_Gal(self, wave):
"""
Galactic extinction law
Savage & Mathis 1979, ARA&A, 17, 73
http://adsabs.harvard.edu/abs/1979ARA%26A..17...73S
Comments:
Average of several extinction laws
R_V=3.1
Scope: Galactic
Range: UV through IR
"""
x = 1e4 / np.asarray([wave]) # inv microns
X_tab = np.loadtxt(ROOT_DIR + '/extinction/Gal_SM79.txt')
Xx = np.interp(x, X_tab[:, 0], X_tab[:, 1])
return np.squeeze(Xx)
def _G03_LMC(self, wave):
"""
Extinction curve for the LMC
Gordon et al. (2003, ApJ, 594,279)
http://adsabs.harvard.edu/abs/2003ApJ...594..279G
Comments:
Average curve for the LMC
R_V = 3.41
Scope: LMC
Range: 1200 through fIR
"""
x = 1e4 / np.asarray([wave]) # inv microns
X_tab = np.loadtxt(ROOT_DIR + '/extinction/LMC_Gordon.txt')
Xx = self.R_V * np.interp(x, X_tab[:, 0], X_tab[:, 1])
return np.squeeze(Xx)
def _F99_like(self, wave):
"""
In the UV, it returns the Fitzpatrick & Massa 1990 law.
In the opt/IR, it returns the Fitzpatrick & Massa 1990 law.
Fitzpatrick 1999, PASP, 11, 63
http://adsabs.harvard.edu/abs/1999PASP..111...63F
Fitzpatrick & Massa 1990, ApJS, 72, 163
http://adsabs.harvard.edu/abs/1990ApJS...72..163F
Comments:
The FM90 depends on 6 parameters which must be set by the user and are stored in RedCorr.FitzParams.
For the predefined set of parameters defined in FM99, use instead the F99 law.
R_V must be provided, as the law depends on it. The dependence with R_V follows Table 4 in the F99 paper
Range: UV through IR
"""
def fit_UV(x):
Xx = c1 + c2 * x
Xx += c3 * x ** 2 / ((x ** 2 - x0 ** 2) ** 2 + (x * gamma) ** 2)
tt2 = (x > 5.9)
if tt2 is not False:
Xx[tt2] += c4 * (0.5392 * (x[tt2] - 5.9) ** 2 + 0.05644 * (x[tt2] - 5.9) ** 3)
Xx += self.R_V
return Xx
x = 1e4 / np.asarray([wave]) # inv microns
Xx = np.zeros_like(x)
if self.FitzParams is None:
pn.log_.warn('Fitzpatrick law requires FitzParams', calling=self.calling)
return None
x0 = self.FitzParams[0]
gamma = self.FitzParams[1]
c1 = self.FitzParams[2]
c2 = self.FitzParams[3]
c3 = self.FitzParams[4]
c4 = self.FitzParams[5]
# UV from the 1988 paper:
xcutuv = 10000.0 / 2700.0
tt = (x >= xcutuv)
Xx[tt] = fit_UV(x[tt])
l2x = lambda l: 1e4 / l
x_opir = np.array([0, l2x(26500.0), l2x(12200.0), l2x(6000.0), l2x(5470.0), l2x(4670.0), l2x(4110.0),
l2x(2700.), l2x(2600.)])
norm = self.R_V / 3.1
# Opt and IR from the 1999 paper
y_opir = np.array([0., 0.265 * norm, 0.829 * norm, -0.426 + 1.0044 * self.R_V,
- 0.050 + 1.0016 * self.R_V , 0.701 + 1.0016 * self.R_V,
1.208 + 1.0032 * self.R_V - 0.00033 * self.R_V ** 2, fit_UV(l2x(2700.)), fit_UV(l2x(2600.))])
tt = x < xcutuv
if tt.sum() > 0:
tck = interpolate.splrep(x_opir, y_opir)
Xx[tt] = interpolate.splev(x[tt], tck, der=0)
return np.squeeze(Xx)
# Commented out because it duplicates _F99_like
# def _F99_like_IDL(self, wave):
"""
Same as F99_like, but with a different function in the opt/IR fitting, based on an IDL program
provided by F99. The results should be identical.
In the UV, it returns the Fitzpatrick & Massa 1990 law.
In the opt/IR, it returns the Fitzpatrick 1990 law.
Fitzpatrick 1999, PASP, 11, 63
http://adsabs.harvard.edu/abs/1999PASP..111...63F
Fitzpatrick & Massa 1990, ApJS, 72, 163
http://adsabs.harvard.edu/abs/1990ApJS...72..163F
Comments:
The FM90 depends on 6 parameters which must be set by the user and are stored in RedCorr.FitzParams.
For the predefined set of parameters defined in FM99, use instead the F_99 method.
R_V must be provided, as the law depends on it. The dependence with R_V follows Table 4 in the F99 paper
Scope:
Range: UV through IR
"""
"""
def fit_UV(x):
Xx = c1 + c2 * x
Xx += c3 * x ** 2 / ((x ** 2 - x0 ** 2) ** 2 + (x * gamma) ** 2)
tt2 = (x > 5.9)
if tt2 is not False:
Xx[tt2] += c4 * (0.5392 * (x[tt2] - 5.9) ** 2 + 0.05644 * (x[tt2] - 5.9) ** 3)
Xx += self.R_V
return Xx
x = 1e4 / np.asarray([wave]) # inv microns
Xx = np.zeros_like(x)
if self.FitzParams is None:
pn.log_.error('Fitzpatrick law requires FitzParams to be set', calling=self.calling)
return None
x0 = self.FitzParams[0]
gamma = self.FitzParams[1]
c1 = self.FitzParams[2]
c2 = self.FitzParams[3]
c3 = self.FitzParams[4]
c4 = self.FitzParams[5]
xcutuv = 10000.0 / 2700.0
tt = (x >= xcutuv)
Xx[tt] = fit_UV(x[tt])
l2x = lambda l: 1e4 / l
x_opir = np.array([0, l2x(26500.0), l2x(12200.0), l2x(6000.0), l2x(5470.0), l2x(4670.0), l2x(4110.0),
l2x(2700.), l2x(2600.)])
norm = self.R_V / 3.1
# Opt and IR computed with the IDL program provided by Fitzpatrick 1999:
y_opir = np.array([0.0, 0.26469 * norm, 0.82925 * norm, poly(self.R_V, [-4.22809e-01, 1.00270, 2.13572e-04]),
poly(self.R_V, [-5.13540e-02, 1.00216, -7.35778e-05]),
poly(self.R_V, [ 7.00127e-01, 1.00184, -3.32598e-05]),
poly(self.R_V, [ 1.19456, 1.01707, -5.46959e-03, 7.97809e-04, -4.45636e-05]),
fit_UV(l2x(2700.)), fit_UV(l2x(2600.))])
tt = x < xcutuv
if tt.sum() > 0:
tck = interpolate.splrep(x_opir, y_opir)
Xx[tt] = interpolate.splev(x[tt], tck, der=0)
return np.squeeze(Xx)
"""
def _MCC99_FM90_LMC(self, wave):
"""
In the UV, this method returns the extinction curve proposed for the LMC
by Misselt et al 1999 based on the 1990 variant of the Fitzpatrick & Massa law
In the opt/IR, it returns the Fitzpatrick & Massa 1990 law.
Misselt, Clayton & Gordon 1999 , ApJ, 515, 128
http://adsabs.harvard.edu/abs/1999ApJ...515..128M
Fitzpatrick & Massa 1990, ApJS, 72, 163
http://adsabs.harvard.edu/abs/1990ApJS...72..163F
Comments:
The Fitzpatrick & Massa 1990 law in the UV depends on 6 parameters, stored in RedCorr.FitzParams.
The method sets RedCorr.FitzParams to the values of set in the Fitzpatrick 1999 paper,
which includes an explicit dependence on R_V.
R_V must be provided, as the law depends on its value.
We refer to FM90 and not to the original FM88 because the value of a constant in F(lambda) slightly changed (0.0564 -> 0.05644)
The value of another constant of F(lambda) appears to change from FM90 to MCC99, but it is probably a typo (0.5392 -> 0.5329)
Scope: LMC
"""
x0 = 4.596
gamma = 0.91
c1 = -1.28
c2 = 1.11
c3 = 2.73
c4 = 0.64
self.FitzParams = [x0, gamma, c1, c2, c3, c4]
return self._F99_like(wave)
def _F99(self, wave):
"""
This method returns the R-dependent IR-through-UV extinction curve proposed by Fitzpatrick 1999.
Fitzpatrick 1999, PASP, 11, 63
http://adsabs.harvard.edu/abs/1999PASP..111...63F
based on:
Fitzpatrick & Massa 1990, ApJS, 72, 163
http://adsabs.harvard.edu/abs/1990ApJS...72..163F
Comments:
The Fitzpatrick & Massa 1990 law in the UV depends on 6 parameters, stored in RedCorr.FitzParams.
The method sets RedCorr.FitzParams to the values of set in the Fitzpatrick 1999 paper,
which includes an explicit dependence on R_V.
R_V must be provided, as the law depends on its value.
Range: UV through IR
"""
x0 = 4.596
gamma = 0.99
c3 = 3.23
c4 = 0.41
c2 = -0.824 + 4.717 / self.R_V # 0.7 if RV=3.1
c1 = 2.030 - 3.007 * c2 # -0.0677 if RV = 3.1
self.FitzParams = [x0, gamma, c1, c2, c3, c4]
return self._F99_like(wave)
def _FM88_F99_LMC(self, wave):
"""
This method returns:
- in the UV, the average LMC extinction curve derived by Fitzpatrick & Massa 1988
- in the opt/IR, the R-dependent extinction curve proposed by Fitzpatrick 1999.
Fitzpatrick 1999, PASP, 11, 63
http://adsabs.harvard.edu/abs/1999PASP..111...63F
Fitzpatrick & Massa 1988, ApJ, 328, 734
http://adsabs.harvard.edu/abs/1988ApJ...328..734F
Comments:
The Fitzpatrick and Massa law in the UV depends on 6 parameters, stored in RedCorr.FitzParams and
here set to the LMC values derived in FM88
R_V must be provided, as the law depends on it
Scope: LMC
Range: UV through IR
"""
x0 = 4.608
gamma = 0.994
c1 = -0.687
c2 = 0.891
c3 = 2.55
c4 = 0.504
self.FitzParams = [x0, gamma, c1, c2, c3, c4]
return self._F99_like(wave)
def _Cal00(self, wave):
"""
This function returns the extinction curve proposed by Calzetti et al. 2000
for actively star-forming galaxies.
reference:
The Dust Content and Opacity of Actively Star-forming Galaxies
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T.
2000, Astrophysical Journal, 533, 682-695
http://adsabs.harvard.edu/abs/2000ApJ...533..682C
"""
x = 1e4 / np.asarray([wave]) # inv microns
Xx = np.zeros_like(x)
tt = (x > 1/0.63) & (x <= 1/0.12)
res = 2.659 * (((0.011 * x[tt] - 0.198) * x[tt] + 1.509) * x[tt] - 2.156)
Xx[tt] = res + self.R_V
tt = (x > 1/2.2) & (x <= 1/0.63)
res = 2.659 * (-1.857 + 1.040 * x[tt])
Xx[tt] = res + self.R_V
return np.squeeze(Xx)
def _zeros(self, wave):
"""
No correction, return 0.0
"""
return np.zeros_like(wave)
|