Skip to content

ICF

ICF

Bases: object

Source code in pyneb/core/icf.py
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
class ICF(object):

    def __init__(self):
        """
        ICF tool.
        No parameters for the instantiation.
        """

        self.log_ = pn.log_ 
        self.calling = 'ICF'

        self._init_all_icfs()
        self._max_pass = 3

    def _init_all_icfs(self):
        # Dictionary of ICF recipes
        self.all_icfs = {'direct_He.23':{'elem': 'He',
                                       'atom': 'abun["He2"] + abun["He3"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_N.23':{'elem': 'N',
                                       'atom': 'abun["N2"] + abun["N3"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_N.234':{'elem': 'N',
                                       'atom': 'abun["N2"] + abun["N3"] + abun["N4"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_N.2345':{'elem': 'N',
                                       'atom': 'abun["N2"] + abun["N3"] + abun["N4"] + abun["N5"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_O.23':{'elem': 'O',
                                       'atom': 'abun["O2"] + abun["O3"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_O.234':{'elem': 'O',
                                       'atom': 'abun["O2"] + abun["O3"] + abun["O4"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_O.2345':{'elem': 'O',
                                       'atom': 'abun["O2"] + abun["O3"] + abun["O4"] + abun["O5"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_S.23':{'elem': 'S',
                                       'atom': 'abun["S2"] + abun["S3"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_S.234':{'elem': 'S',
                                       'atom': 'abun["S2"] + abun["S3"] + abun["S4"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_S.2345':{'elem': 'S',
                                       'atom': 'abun["S2"] + abun["S3"] + abun["S4"] + abun["S5"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Ne.23':{'elem': 'Ne',
                                       'atom': 'abun["Ne2"] + abun["Ne3"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Ne.235':{'elem': 'Ne',
                                       'atom': 'abun["Ne2"] + abun["Ne3"] + abun["Ne5"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Ne.2345':{'elem': 'Ne',
                                       'atom': 'abun["Ne2"] + abun["Ne3"] + abun["Ne4"] + abun["Ne5"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Ne.345':{'elem': 'Ne',
                                       'atom': 'abun["Ne3"] + abun["Ne4"] + abun["Ne5"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Ne.2356':{'elem': 'Ne',
                                       'atom': 'abun["Ne2"] + abun["Ne3"] + abun["Ne5"] + abun["Ne6"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Mg.45':{'elem': 'Mg',
                                       'atom': 'abun["Mg4"] + abun["Mg5"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Ar.23':{'elem': 'Ar',
                                       'atom': 'abun["Ar2"] + abun["Ar3"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Ar.234':{'elem': 'Ar',
                                       'atom': 'abun["Ar2"] + abun["Ar3"] + abun["Ar4"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Ar.345':{'elem': 'Ar',
                                       'atom': 'abun["Ar3"] + abun["Ar4"] + abun["Ar5"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Cl.23':{'elem': 'Cl',
                                       'atom': 'abun["Cl2"] + abun["Cl3"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Cl.34':{'elem': 'Cl',
                                       'atom': 'abun["Cl3"] + abun["Cl4"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'direct_Cl.234':{'elem': 'Cl',
                                       'atom': 'abun["Cl2"] + abun["Cl3"] + abun["Cl4"]',
                                       'icf': '1',
                                       'type': 'All',
                                       'comment': 'just summing visible ions'},
                         'TPP77_13': {'elem': 'O',
                                      'atom': 'abun["O2"] + abun["O3"]',
                                      'icf': '(abun["He2"] + abun["He3"]) / abun["He2"]',
                                      'type': 'PNe',
                                      'comment': ''},
                         'TPP77_14': {'elem': 'N',
                                      'atom': 'abun["N2"]',
                                      'icf': '(abun["O2"] + abun["O3"]) / abun["O2"]',
                                      'type': 'PNe',
                                      'comment': ''},
                         'TPP77_15': {'elem': 'Ne',
                                      'atom': 'abun["Ne3"]',
                                      'icf': '(abun["O2"] + abun["O3"]) / abun["O3"]',
                                      'type': 'PNe',
                                      'comment': ''},
                         'PHCD07_12': {'elem': 'Ne',
                                       'atom': 'abun["Ne3"]',
                                       'icf': '(abun["O2"] + abun["O3"]) / abun["O3"]',
                                       'type': 'HII',
                                       'comment': 'Based on a grid of photoionization models'},
                         'PHCD07_13': {'elem': 'Ne',
                                       'atom': 'abun["Ne3"]',
                                       'icf': '(0.753 + 0.142 * abun["O3"] / (abun["O2"] + abun["O3"]) + 0.171 / abun["O3"] * (abun["O2"] + abun["O3"]))',
                                       'type': 'HII',
                                       'comment': 'Based on a grid of photoionization models'},
# PHCD07_16 and 17 added on December 11, 2014
                         'PHCD07_16': {'elem': 'Ar',
                                       'atom': '(abun["Ar3"] + abun["Ar4"])',
                                       'icf': '(0.928 + 0.364 * (1 - abun["O3"] / (abun["O2"] + abun["O3"])) + 0.006 / (1 - abun["O3"] / (abun["O2"] + abun["O3"])))',
                                       'type': 'HII',
                                       'comment': 'Based on a grid of photoionization models'},
                         'PHCD07_17': {'elem': 'Ar',
                                       'atom': 'abun["Ar3"]',
                                       'icf': '(0.596 + 0.967 * (1 - abun["O3"] / (abun["O2"] + abun["O3"])) + 0.077 / (1 - abun["O3"] / (abun["O2"] + abun["O3"])))',
                                       'type': 'HII',
                                       'comment': 'Based on a grid of photoionization models'},
# Cited in PHCD07 but originally proposed by ITL94. Authorship changed in the code 3/Nov/2014. 
#                         'PHCD07_14': {'elem': 'Ar',
                         'ITL94_19': {'elem': 'Ar',
                                       'atom': '(abun["Ar3"] + abun["Ar4"])',
                                       'icf': '(0.99 + 0.091 * abun["O2"] / (abun["O2"] + abun["O3"]) - 1.14 * (abun["O2"] / (abun["O2"] + abun["O3"]))**2. + 0.077 * (abun["O2"] / (abun["O2"] + abun["O3"]))**3.)**-1.',
                                       'type': 'HII',
                                       'comment': 'Based on a grid of photoionization models'},
# Cited in PHCD07 but originally proposed by ITL94. Authorship changed in the code 3/Nov/2014. 
#                         'PHCD07_15': {'elem': 'Ar',
                         'ITL94_20': {'elem': 'Ar',
                                       'atom': 'abun["Ar3"]',
                                       'icf': '(0.15 + 2.39 * abun["O2"] / (abun["O2"] + abun["O3"]) - 2.64 * (abun["O2"] / (abun["O2"] + abun["O3"]))**2.)**-1.',
                                       'type': 'HII',   
                                       'comment': 'Based on a grid of photoionization models'},
                         'PTPR92_21':{'elem': 'He',
                                       'atom': 'abun["He2"]',
                                       'icf': '(1 + abun["S2"] / (elem_abun["KB94_A36.10"] -  abun["S2"]))',
                                       'type': 'HII',
                                       'comment': 'Based on ionization potentials'},

                         'KB94_A0': {'elem': 'N',
                                    'atom': 'abun["N2"] + abun["N3"] + abun["N4"] + abun["N5"]',
                                    'icf': '1',
                                     'type': 'PNe',
                                     'comment': 'Sum of all N ions from N+ to N4+'},

                         'KB94_A1.6': {'elem': 'N',
                                     'atom': 'abun["N2"]',
                                     'icf': 'elem_abun["KB94_A6"]  / abun["O2"]',
                                     'type': 'PNe',
# Comment clarified on 12 Dec 2014 
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 are detected, but O5 is not'},
                         'KB94_A1.8': {'elem': 'N',
                                     'atom': 'abun["N2"]',
                                     'icf': 'elem_abun["KB94_A8"]  / abun["O2"]',
                                     'type': 'PNe',
# wrong comment. Corrected 12 Dec 2014
#                                     'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                     'comment': 'Based on a grid of photoionization models. To be used if both O3 and are N5 detected, but O4 is not'},
                         'KB94_A1.10': {'elem': 'N',
                                     'atom': 'abun["N2"]',
                                     'icf': 'elem_abun["KB94_A10"]  / abun["O2"]',
                                     'type': 'PNe',
# wrong comment. Corrected 12 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                      'comment': 'Based on a grid of photoionization models. To be used if only O2 and O3 are detected'},
                         'KB94_A1.10b': {'elem': 'N',
                                     'atom': 'abun["N2"]',
                                     'icf': 'elem_abun["KB94_A10b"]  / abun["O2"]',
                                     'type': 'PNe',
# wrong comment. Corrected 12 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                      'comment': 'Based on a grid of photoionization models. To be used if only O2 and O3 are detected and no HeII is seen'},
                         'KB94_A6': {'elem': 'O',
                                     'atom': 'abun["O2"] + abun["O3"] + abun["O4"]',
                                      'icf': '1 / (1 - 0.95 * abun["N5"] / (abun["N2"] + abun["N3"] + abun["N4"] + abun["N5"]))',
                                      'type': 'PNe',
# Comment clarified on 12 Dec 2014 
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 are detected, but O5 is not'},
                         'KB94_A8': {'elem': 'O',
                                     'atom': 'abun["O2"] + abun["O3"]',
                                     'icf': '(abun["N2"] + abun["N3"] + abun["N4"] + abun["N5"]) / (abun["N2"] + abun["N3"])',
                                     'type': 'PNe',
# Comment clarified on 12 Dec 2014 
#                                     'comment': 'Based on a grid of photoionization models. To be used if N5 detected and O4 not detected'},
                                     'comment': 'Based on a grid of photoionization models. To be used if N5 detected, but neither O3 nor O4 are'},
                         'KB94_A10': {'elem': 'O',
                                      'atom': 'abun["O2"] + abun["O3"]',
                                      'icf': '((abun["He2"] + abun["He3"]) / abun["He2"])**(2./3.)',
                                      'type': 'PNe',
                                      'comment': 'Based on a grid of photoionization models. To be used if only O2 and O3 are detected'},
                         'KB94_A10b': {'elem': 'O',
                                      'atom': 'abun["O2"] + abun["O3"]',
                                      'icf': '1',
                                      'type': 'PNe',
                                      'comment': 'Based on a grid of photoionization models. To be used if only O2 and O3 are detected and no HeII is seen'},
# Wrong  12 Dec 2014
#                         'KB94_A10.5': {'elem': 'C',
#                                        'atom': 'abun["C2"] + abun["C3"] + abun["C4"] + abun["C5"]',
#                                        'icf': '1',
#                                        'type': 'PNe',
#                                        'comment': 'Based on a grid of photoionization models. To be used if no He3 detected and C2, C3, and C4 detected'},
# Misleading comment clarified on 12 Dec 2014 
                        'KB94_A12': {'elem': 'C',
                                      'atom': 'abun["C3"] + abun["C4"]',
                                      'icf': '(abun["O2"] + abun["O3"]) / abun["O3"]',
                                      'type': 'PNe',
#                                      'comment': 'Based on a grid of photoionization models. To be used if no C II lines detected'},
                                      'comment': 'Based on a grid of photoionization models. To be used if no C2 lines available and C4 and He3 are not present'},
# Wrong because eq. A10 does not point to eq. A6 (no O4 present). 12 Dec 2014
#                         'KB94_A13.6': {'elem': 'C',
#                                      'atom': 'abun["C3"]',
#                                      'icf': 'elem_abun["KB94_A6"] / abun["O3"]',
#                                      'type': 'PNe',
#                                      'comment': 'Based on a grid of photoionization models. To be used if no C II lines detected'},
#
# Wrong because eq. A10 does not point to eq. A8 (no N5 present)
#                         'KB94_A13.8': {'elem': 'C',
#                                      'icf': 'elem_abun["KB94_A8"] / abun["O3"]',
#                                      'atom': 'abun["C3"]',
#                                      'type': 'PNe',
#                                      'comment': 'Based on a grid of photoionization models. To be used if no C II lines detected'},
# Misleading comment clarified on 12 Dec 2014 
                         'KB94_A13.10': {'elem': 'C',
                                      'atom': 'abun["C3"]',
                                      'icf': 'elem_abun["KB94_A10"] / abun["O3"]',
                                      'type': 'PNe',
#                                     'comment': 'Based on a grid of photoionization models. To be used if no C II lines detected'},
                                      'comment': 'Based on a grid of photoionization models. To be used if C5 is not present; only C3 lines are detected; O3 also detected; He2 and He3 also detected'},
                         'KB94_A13.10b': {'elem': 'C',
                                      'atom': 'abun["C3"]',
                                      'icf': 'elem_abun["KB94_A10b"] / abun["O3"]',
                                      'type': 'PNe',
#                                     'comment': 'Based on a grid of photoionization models. To be used if no C II lines detected'},
                                      'comment': 'Based on a grid of photoionization models. To be used if C5 is not present; only C3 lines are detected; O3 also detected; He2 also detected, He3 Not'},
# Clarified comment 12 Dec 2014
                         'KB94_A16': {'elem': 'C',
                                      'atom': 'abun["C2"] + abun["C3"] + abun["C4"]',
                                      'icf': '1 / (1 - 2.7 * abun["N5"] / (abun["N2"] + abun["N3"] + abun["N4"] + abun["N5"]))',
                                      'type': 'PNe',
#                                     'comment': 'Based on a grid of photoionization models. Valid for high excitation PNe if icf < 5'},
                                       'comment': 'Based on a grid of photoionization models. To be used in high excitation PNe where C5 is present (as inferred from He3 and N5). Valid if icf < 5'},
# Clarified comment 12 Dec 2014
                         'KB94_A19': {'elem': 'C',
                                      'atom': 'abun["C2"] + abun["C3"] + abun["C4"]',
                                      'icf': '(1 + abun["N5"] / (abun["N2"] + abun["N3"] + abun["N4"]))',
                                      'type': 'PNe',
#                                      'comment': 'Based on a grid of photoionization models. Valid for extremely high excitation PNe if icf > 5'},
                                       'comment': 'Based on a grid of photoionization models. To be used in very high excitation PNe where C5 is present (as inferred from He3 and N5). Valid if icf > 5'},
                         'KB94_A21': {'elem': 'C',
                                      'atom': 'abun["C2"] + abun["C3"] + abun["C4"]',
                                      'icf': '((abun["He2"] + abun["He3"]) / abun["He2"])**(1./3.)',
                                      'type': 'PNe',
                                      'comment': 'Based on a grid of photoionization models. Valid if He3 present and N5 absent'},
# Clarified comment 12 Dec 2014
                         'KB94_A26': {'elem': 'C',
                                      'atom': 'abun["C2"] + abun["C3"] + abun["C4"]',
                                      'icf': '(abun["O2"] + abun["O3"]) / abun["O3"] * ((abun["He2"] + abun["He3"]) / abun["He2"])**(1./3.)',
                                      'type': 'PNe',
#                                      'comment': 'Based on a grid of photoionization models. Valid if C5 is present but N4 or N5 not seen'},
                                      'comment': 'Based on a grid of photoionization models. Valid if C5 is present but only optical data are available, so N4 and N5 are not seen'},
                         'KB94_A27': {'elem': 'Ne',
                                      'atom': 'abun["Ne3"] + abun["Ne5"]',
                                      'icf': '1.5',
                                      'type': 'PNe',
# Wrong comment. Corrected 19 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. Valid if N4 or N5 not seen'},
                                      'comment': 'Based on a grid of photoionization models. Valid if Ne3 and Ne5 are seen and Ne4 is not'},
#
# Unsure about this icf. I don't know if eq. 28 can be mixed with eq. 6. In any case, I explicitly set out the conditions of eq. 6 in the comment.
                         'KB94_A28.6':{'elem': 'Ne',
                                       'atom': 'abun["Ne3"]',
                                       'icf': 'elem_abun["KB94_A6"]  / abun["O3"]',
                                      'type': 'PNe',
# Wrong comment. Corrected 19 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. Valid if N4 or N5 not seen'},
                                      'comment': 'Based on a grid of photoionization models. Valid if neither Ne4 nor Ne5 are seen, both O4 and N5 are detected, but O5 is not'},
#
# Unsure about this icf. I don't know if eq. 28 can be mixed with eq. 8. In any case, I explicitly set out the conditions of eq. 6 in the comment.
                         'KB94_A28.8':{'elem': 'Ne',
                                     'atom': 'abun["Ne3"]',
                                     'icf': 'elem_abun["KB94_A8"]  / abun["O3"]',
                                      'type': 'PNe',
# Wrong comment. Corrected 19 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. Valid if N4 or N5 not seen'},
                                      'comment': 'Based on a grid of photoionization models. Valid if neither Ne4 nor Ne5 are seen, N5 is detected, but neither O3 nor O4 are'},
#
# Unsure about this icf. I don't know if eq. 28 can be mixed with eq. 10. In any case, I explicitly set out the conditions of eq. 6 in the comment.
                         'KB94_A28.10':{'elem': 'Ne',
                                     'atom': 'abun["Ne3"]',
                                     'icf': 'elem_abun["KB94_A10"]  / abun["O3"]',
                                      'type': 'PNe',
# Wrong comment. Corrected 19 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. Valid if N4 or N5 not seen'},
                                      'comment': 'Based on a grid of photoionization models. Valid if neither Ne4 nor Ne5 are seen, if C5 is not present; only C3 lines are detected; O3 also detected; He2 and He3 also detected'},
                         'KB94_A28.10b':{'elem': 'Ne',
                                     'atom': 'abun["Ne3"]',
                                     'icf': 'elem_abun["KB94_A10b"]  / abun["O3"]',
                                      'type': 'PNe',
# Wrong comment. Corrected 19 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. Valid if N4 or N5 not seen'},
                                      'comment': 'Based on a grid of photoionization models. Valid if neither Ne4 nor Ne5 are seen, if C5 is not present; only C3 lines are detected; O3 also detected; He2 detected, He3 not.'},
# 26 Dec 2014 These icfs are temporarily commented out because they must be checked. The comments, at the very least, are wrong, and thee icfs may be physically wrong.  
                         'KB94_A30.0': {'elem': 'Ar',
                                     'atom': 'abun["Ar3"] + abun["Ar4"] + abun["Ar5"]',
                                     'type': 'PNe',
                                     'icf': '1./(1. - abun["N2"] / elem_abun["KB94_A0"])',
                                      'comment': 'Based on a grid of photoionization models. To be used if N+ to N4+ are seen'},
                         'KB94_A30.10': {'elem': 'Ar',
                                     'atom': 'abun["Ar3"] + abun["Ar4"] + abun["Ar5"]',
                                     'icf': '1./(1. - abun["N2"] / elem_abun["KB94_A1.10"])',
                                     'type': 'PNe',
                                      'comment': 'Based on a grid of photoionization models. To be used if He2 and He3 are detected.'},
                         'KB94_A30.10b': {'elem': 'Ar',
                                     'atom': 'abun["Ar3"] + abun["Ar4"] + abun["Ar5"]',
                                     'icf': '1./(1. - abun["N2"] / elem_abun["KB94_A1.10b"])',
                                     'type': 'PNe',
                                      'comment': 'Based on a grid of photoionization models. To be used if He2 is detected.and He3 not.'},
# end block of commented icfs
                         'KB94_A32': {'elem': 'Ar',
                                     'atom': 'abun["Ar3"]',
                                     'icf': '1.87',
                                     'type': 'PNe',
# Wrong comment. Corrected 26 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                     'comment': 'Based on a grid of photoionization models. To be used when only Ar3 is observed'},
                         'KB94_A36.6':{'elem': 'S',
                                     'atom': 'abun["S2"] + abun["S3"]',
                                     'icf': ' (1 - (1 - abun["O2"]/elem_abun["KB94_A6"])**3)**(-1./3.)',
                                      'type': 'PNe',
# Wrong comment. Corrected 26 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                      'comment': 'Based on a grid of photoionization models. Valid if both S2 and S3 detected'},
                         'KB94_A36.8':{'elem': 'S',
                                     'atom': 'abun["S2"] + abun["S3"]',
                                     'icf': ' (1-(1 - abun["O2"]/elem_abun["KB94_A8"])**3)**(-1./3.)',
                                      'type': 'PNe',
# Wrong comment. Corrected 26 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                      'comment': 'Based on a grid of photoionization models. Valid if both S2 and S3 detected'},
                         'KB94_A36.10':{'elem': 'S',
                                     'atom': 'abun["S2"] + abun["S3"]',
                                     'icf': ' (1-(1 - abun["O2"]/elem_abun["KB94_A10"])**3)**(-1./3.)',
                                      'type': 'PNe',
# Wrong comment. Corrected 26 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                      'comment': 'Based on a grid of photoionization models. Valid if both S2 and S3 detected. He2 and He3 detected.'},
                         'KB94_A36.10b':{'elem': 'S',
                                     'atom': 'abun["S2"] + abun["S3"]',
                                     'icf': ' (1-(1 - abun["O2"]/elem_abun["KB94_A10b"])**3)**(-1./3.)',
                                      'type': 'PNe',
# Wrong comment. Corrected 26 Dec 2014
#                                      'comment': 'Based on a grid of photoionization models. To be used if both O4 and N5 detected'},
                                      'comment': 'Based on a grid of photoionization models. Valid if both S2 and S3 detected. He2 detected, He3 not.'},
# 26 Dec 2014 These icfs are temporarily commented out because they must be still be checked. 
# June 2023, after talking with L. Stanghellini, it appears there is a typo in KB94_A38, 4.677 + instead of 4.677 *
                         'KB94_A38.6':{'elem': 'S',
                                     'atom': 'abun["S2"]',
                                     'icf': '((1 - (1 - abun["O2"]/elem_abun["KB94_A6"])**3)**(-1./3.)) * (4.677 * (abun["O3"]/abun["O2"])**(0.433))',
                                      'type': 'PNe',
                                      'comment': 'Based on a grid of photoionization models and the S3/S2 ratio of a sample of PNe. Valid if S2 is detected but S3 is not detected'},
# Added 26 Dec 2014
                         'KB94_A38.8':{'elem': 'S',
                                     'atom': 'abun["S2"]',
                                     'icf': '((1 - (1 - abun["O2"]/elem_abun["KB94_A8"])**3)**(-1./3.)) * (4.677 * (abun["O3"]/abun["O2"])**(0.433))',
                                      'type': 'PNe',
                                      'comment': 'BBased on a grid of photoionization models and the S3/S2 ratio of a sample of PNe. Valid if S2 is detected but S3 is not detected'},
# Added 26 Dec 2014
                         'KB94_A38.10':{'elem': 'S',
                                     'atom': 'abun["S2"]',
                                     'icf': '((1 - (1 - abun["O2"]/elem_abun["KB94_A10"])**3)**(-1./3.)) * (4.677 * (abun["O3"]/abun["O2"])**(0.433))',
                                      'type': 'PNe',
                                      'comment': 'Based on a grid of photoionization models and the S3/S2 ratio of a sample of PNe. Valid if S2 is detected but S3 is not detected'},
                         'KH01_4a': {'elem': 'He',
                                     'atom': 'abun["He2"] + abun["He3"]',
                                     'icf': '1',
                                     'type': 'PNe',
                                     'comment': 'Based on a grid of photoionization models'},
                         'KH01_4b': {'elem': 'O',
                                     'atom': 'abun["O2"] + abun["O3"]',
                                     'icf': '(abun["He2"] + abun["He3"]) / abun["He2"]',
                                     'type': 'PNe',
                                     'comment': 'Based on a grid of photoionization models'},
                         'KH01_4c': {'elem': 'N',
                                     'atom': 'abun["N2"]',
                                     'icf': '(abun["O2"] + abun["O3"]) / abun["O2"] * (abun["He2"] + abun["He3"]) / abun["He2"]',
                                     'type': 'PNe',
                                     'comment': 'Based on a grid of photoionization models'},
                         'KH01_4d': {'elem': 'Ne',
                                     'atom': 'abun["Ne3"]',
                                     'icf': '(abun["O2"] + abun["O3"]) / abun["O3"] * (abun["He2"] + abun["He3"]) / abun["He2"]',
                                     'type': 'PNe',
                                     'comment': 'Based on a grid of photoionization models'},
                         'KH01_4e': {'elem': 'S',
                                     'atom': 'abun["S2"] + abun["S3"]',
                                     'icf': '10**(-0.017+0.18*np.log10(elem_abun["KH01_4b"]/ abun["O2"])-0.11*np.log10(elem_abun["KH01_4b"]/ abun["O2"])**2+0.072*np.log10(elem_abun["KH01_4b"]/ abun["O2"])**3)',
                                     'type': 'PNe',
                                     'comment': 'Based on a grid of photoionization models'},
                         'KH01_4f': {'elem': 'Cl',
                                     'atom': 'abun["Cl3"] + abun["Cl4"]',
                                     'icf': '(abun["He2"] + abun["He3"]) / abun["He2"]',
                                     'type': 'PNe',
                                     'comment': 'Based on a grid of photoionization models'},
                         'KH01_4g': {'elem': 'Ar',
                                     'atom': 'abun["Ar3"] + abun["Ar4"]',
                                     'icf': '(abun["He2"] + abun["He3"]) / abun["He2"] / (1 -  abun["N2"] / (elem_abun["KH01_4c"]))',
                                     'type': 'PNe',
                                     'comment': 'Based on a grid of photoionization models'},
                         'KH01_4txt': {'elem': 'Ar',
                                     'atom': 'abun["Ar3"]',
                                     'icf': '1',
                                     'type': 'PNe',
                                     'comment': 'Based on a grid of photoionization models. To be used when log(O/O2) <= 0.6'},
                         'Ial06_16': {'elem': 'O',
                                      'atom': 'abun["O2"] + abun["O3"]',
                                      'icf': '1',
                                      'type': 'HII',
                                      'comment': 'Based on a grid of photoionization models. To be used if no 4686 detected'},
                         'Ial06_17': {'elem': 'O',
                                      'atom': 'abun["O2"] + abun["O3"]',
                                      'icf': '1 + 0.5 * abun["He3"] / (abun["He2"] + abun["He3"])',
                                      'type': 'HII',
                                      'comment': 'Based on a grid of photoionization models. To be used if 4686 detected'},
# Wrong. It is not a general ICF recipe but a particular case. Changed for PTPR92_21
#
#                         'GRal04_10a': {'elem': 'He',
#                                      'atom': 'abun["He2"]',
#                                      'type': 'HII',
#                                      'icf': '1.05',
#                                      'comment': 'Based on the ionization potential. To be used if t2 = 0.00'},
#                         'GRal04_10b': {'elem': 'He',
#                                      'atom': 'abun["He2"]',
#                                      'icf': '1.04',
#                                      'type': 'HII',
#                                      'comment': 'Based on the ionization potential. To be used if t2 > 0.00'},
                         'PTPR92_21': {'elem': 'He',
                                      'atom': 'abun["He2"]',
                                      'icf': '(1 + abun["S2"] / abun["S3"])',
                                      'type': 'HII',
                                      'comment': 'Based on the ionization potential, assumoing that S = S2 + S3'},
                         'PC69_40': {'elem': 'Ne',
                                    'atom': 'abun["Ne3"]',
                                   'icf': '(abun["O2"] + abun["O3"]) / abun["O3"]',
                                   'type': 'HII',
                                   'comment': 'High ionization degree'},
                         'S78_265b': {'elem': 'Ne',
                                      'atom': 'abun["Ne3"]',
                                      'icf': '(abun["O2"] + abun["O3"]) / (abun["O3"] - 0.2 * abun["O2"])',
                                      'type': 'HII',
                                      'comment': 'Based on photoionization models'},
# Superseded by RR05
#                         'RR04_1': {'elem': 'Fe',
#                                      'atom': 'abun["Fe3"]',
#                                      'icf': '(abun["O2"] / abun["O3"])**0.09 * (abun["O2"] + abun["O3"]) / abun["O2"]',
#                                      'type': 'HII',
#                                      'comment': 'Based on photoionization models and the assumption that O/H = (O+ + O++) / H+'},
                         'RR05_2': {'elem': 'Fe',
                                      'atom': 'abun["Fe3"]',
                                      'icf': '0.9 * (abun["O2"] / abun["O3"])**0.08 * (abun["O2"] + abun["O3"]) / abun["O2"]',
                                      'type': 'HII',
                                      'comment': 'Based on fit to data and the assumption that O/H = (O+ + O++) / H+'},
                         'RR05_3': {'elem': 'Fe',
                                      'atom': 'abun["Fe3"]',
                                      'icf': '1.1 * (abun["O2"] / abun["O3"])**0.58 * (abun["O2"] + abun["O3"]) / abun["O2"]',
                                      'type': 'All',
                                      'comment': 'Based on PNe and HII data with -1.35 < log(O2/O3) < -0.1. It is assumed that O/H = (O+ + O++) / H+'},
                         'RR05_4': {'elem': 'Fe',
                                      'atom': 'abun["Fe2"] + abun["Fe3"]',
                                      'icf': '(abun["O2"] + abun["O3"]) / abun["O2"]',
                                      'type': 'All',
                                      'comment': 'Based on PNe and HII data with log(O2/O3) > -0.1. It is assumed that O/H = (O+ + O++) / H+'},
                         'GKA07_1.p269': {'elem': 'Cl',
                                      'atom': 'abun["Cl3"]',
                                      'icf': '(elem_abun["direct_He.23"] / abun["He2"])**2',
                                      'type': 'PNe',
                                      'comment': 'Based on photoionization models'},
                         'mGKA07-PTPR92_p269': {'elem': 'Cl',
                                      'atom': 'abun["Cl3"]',
                                      'icf': '(elem_abun["PTPR92_21"] / abun["He2"])**2',
                                      'type': 'PNe',
                                      'comment': 'Based on photoionization models'},
                         'DIMS14_10': {'elem': 'He',
                                       'atom':'abun["He2"] + abun["He3"]', 
                                       'icf': '1.0',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models'},
                         'DIMS14_12': {'elem': 'O',
                                       'atom':'abun["O2"] + abun["O3"]', 
                                       'icf': '10**((0.08 * abun["He3"] / (abun["He2"] + abun["He3"]) + 0.006 * (abun["He3"] / (abun["He2"] + abun["He3"]))**2) / (0.34 - 0.27 * abun["He3"] / (abun["He2"] + abun["He3"])))',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.03 + 0.5 * abun["He3"] / (abun["He2"] + abun["He3"]) - 0.2 * (abun["He3"] / (abun["He2"] + abun["He3"]))**2',
                                       'up_error': '0.03 + 0.5 * abun["He3"] / (abun["He2"] + abun["He3"]) - 0.2 * (abun["He3"] / (abun["He2"] + abun["He3"]))**2'},
                         'DIMS14_14': {'elem': 'N',
                                       'atom':'abun["N2"]', 
                                       'icf': '10**(-0.16 * abun["O3"] / (abun["O2"] + abun["O3"]) * (1.0 + np.log10(abun["He3"] / (abun["He2"] + abun["He3"])))) * elem_abun["DIMS14_12"] / abun["O2"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.32 * abun["O3"] / (abun["O2"] + abun["O3"])',
                                       'up_error': '0.50 * abun["O3"] / (abun["O2"] + abun["O3"])'},
                         'DIMS14_14b': {'elem': 'N',
                                       'atom':'abun["N2"]', 
                                       'icf': '10**(0.64 * abun["O3"] / (abun["O2"] + abun["O3"])) * elem_abun["DIMS14_12"] / abun["O2"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.32 * abun["O3"] / (abun["O2"] + abun["O3"])',
                                       'up_error': '0.50 * abun["O3"] / (abun["O2"] + abun["O3"])'},
                         'DIMS14_17a': {'elem': 'Ne',
                                       'atom':'abun["Ne3"]', 
                                       'icf': '(abun["O3"] / (abun["O2"] + abun["O3"]) + (0.014 / (abun["He3"] / (abun["He2"] + abun["He3"])) + 2 * (abun["He3"] / (abun["He2"] + abun["He3"]))**2.7)**3 * (0.7 + 0.2 * abun["O3"] / (abun["O2"] + abun["O3"]) - 0.8 * (abun["O3"] / (abun["O2"] + abun["O3"]))**2)) * elem_abun["DIMS14_12"] / abun["O3"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.17',
                                       'up_error': '0.12'},
                         'DIMS14_17b': {'elem': 'Ne',
                                       'atom':'abun["Ne3"]', 
                                       'icf': '(abun["O3"] / (abun["O2"] + abun["O3"]) + (0.014 / (0.01) + 2 * (0.01)**2.7)**3 * (0.7 + 0.2 * abun["O3"] / (abun["O2"] + abun["O3"]) - 0.8 * (abun["O3"] / (abun["O2"] + abun["O3"]))**2)) * elem_abun["DIMS14_12"] / abun["O3"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.17',
                                       'up_error': '0.12'},
                         'DIMS14_17c': {'elem': 'Ne',
                                       'atom':'abun["Ne3"]', 
                                       'icf': '(abun["O3"] / (abun["O2"] + abun["O3"]) + (0.014 / (0.015) + 2 * (0.015)**2.7)**3 * (0.7 + 0.2 * abun["O3"] / (abun["O2"] + abun["O3"]) - 0.8 * (abun["O3"] / (abun["O2"] + abun["O3"]))**2)) * elem_abun["DIMS14_12"] / abun["O3"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.17',
                                       'up_error': '0.12'},
                         'DIMS14_20': {'elem': 'Ne',
                                       'atom':'abun["Ne3"]+abun["Ne5"]', 
                                       'icf': '(1.31+12.68*(abun["He3"]/(abun["He2"]+abun["He3"]))**2.57)**0.27',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.20',
                                       'up_error': '0.17'},
                         'DIMS14_23': {'elem': 'S',
                                       'atom':'abun["S2"]', 
                                       'icf': '(10**(0.31 - 0.52 * abun["He3"] / (abun["He2"] + abun["He3"]))) * elem_abun["DIMS14_12"] / abun["O2"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.38',
                                       'up_error': '0.41'},
                         'DIMS14_26': {'elem': 'S',
                                       'atom':'abun["S2"] + abun["S3"]', 
                                       'icf': '(10**((-0.02 - 0.03*abun["O3"] / (abun["O2"] + abun["O3"]) - 2.31*(abun["O3"] / (abun["O2"] + abun["O3"]))**2 + 2.19 * (abun["O3"] / (abun["O2"] + abun["O3"]))**3) / (0.69 + 2.09 * abun["O3"] / (abun["O2"] + abun["O3"]) - 2.69 * (abun["O3"] / (abun["O2"] + abun["O3"]))**2))) * elem_abun["DIMS14_12"] / abun["O2"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.20',
                                       'up_error': '0.12'},
                         'DIMS14_29': {'elem': 'Cl',
                                       'atom':'abun["Cl3"]', 
                                       'icf': '((4.162 - 4.1622*(abun["O3"] / (abun["O2"] + abun["O3"]))**0.21)**.75) * elem_abun["DIMS14_12"] / abun["O2"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.27',
                                       'up_error': '0.15'},
                         'DIMS14_29b': {'elem': 'Cl',
                                       'atom':'abun["Cl2"] + abun["Cl3"]', 
                                       'icf': '(1.) * elem_abun["DIMS14_12"] / abun["O2"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.13',
                                       'up_error': '0.0'},
                         'DIMS14_32': {'elem': 'Cl',
                                       'atom':'abun["Cl2"] + abun["Cl3"] + abun["Cl4"]', 
                                       'icf': '0.98 + (0.56 - 0.57 * abun["He3"] / (abun["He2"] + abun["He3"]))**7.64',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.30',
                                       'up_error': '0.33'},
                         'DIMS14_35': {'elem': 'Ar',
                                       'atom':'abun["Ar3"]', 
                                       'icf': '(10**(0.05 / (0.06 + abun["O3"] / (abun["O2"] + abun["O3"])) - 0.07)) * elem_abun["DIMS14_12"] / (abun["O2"] + abun["O3"])',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.70',
                                       'up_error': '0.60'},
                         'DIMS14_36': {'elem': 'Ar',
                                       'atom':'abun["Ar3"]', 
                                       'icf': '(10**((0.03  * abun["O3"] / (abun["O2"] + abun["O3"])) / (0.4 - 0.3 * abun["O3"] / (abun["O2"] + abun["O3"])) - 0.05)) * elem_abun["DIMS14_12"] / (abun["O2"] + abun["O3"])',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.70',
                                       'up_error': '0.60'},
                         'DIMS14_39': {'elem': 'C',
                                       'atom':'abun["C3"]', 
                                       'icf': '(0.05 + 2.21 * abun["O3"] / (abun["O2"] + abun["O3"]) - 2.77 * (abun["O3"] / (abun["O2"] + abun["O3"]))**2 + 1.74 * (abun["O3"] / (abun["O2"] + abun["O3"]))**3) * elem_abun["DIMS14_12"] / abun["O3"]',
                                       'type': 'PNe',
                                       'comment': 'Based on photoionization models',
                                       'low_error': '0.19',
                                       'up_error': '(0.4 - 1.06 * abun["O3"] / (abun["O2"] + abun["O3"]) + 0.65 * (abun["O3"] / (abun["O2"] + abun["O3"]))**2 + 0.27 * (abun["O3"] / (abun["O2"] + abun["O3"]))**3) '},
# To be completed
#                         'Sal07_Kr1': {'elem': 'Kr',
#                                       'atom':'abun["Kr3"] + abun["Kr4"]', 
#                                       'icf': 'elem_abun["DIMS14_12"]/(abun["Ar3"] + abun["ar4"])',
#                                       'type': 'PNe',
#                                       'comment': 'Based on photoionization models'},}

                         }

        Ial06 = [('18a', 'N', 'N2', (-0.825, 0.718, 0.853), 'v', 'low Z'),
                 ('18b', 'N', 'N2', (-0.809, 0.712, 0.852), 'v', 'int Z'),
                 ('18c', 'N', 'N2', (-1.476, 1.752, 0.688), 'v', 'high Z'),
                 ('19a', 'Ne', 'Ne3', (-0.385, 1.365, 0.022), 'w', 'low Z'),
                 ('19b', 'Ne', 'Ne3', (-0.405, 1.382, 0.021), 'w', 'int Z'),
                 ('19c', 'Ne', 'Ne3', (-0.591, 0.927, 0.546), 'w', 'high Z'),
                 ('21a', 'Cl', 'Cl3', (0.756, 0.648, 0.022), 'v', 'low Z'),
                 ('21b', 'Cl', 'Cl3', (0.814, 0.620, 0.128), 'v', 'int Z'),
                 ('21c', 'Cl', 'Cl3', (1.186, 0.357, 0.131), 'v', 'high Z'),
                 ('22a', 'Ar', 'Ar3', (0.278, 0.836, 0.121), 'v', 'low Z'),
                 ('22b', 'Ar', 'Ar3', (0.285, 0.833, 0.051), 'v', 'int Z'),
                 ('22c', 'Ar', 'Ar3', (0.517, 0.763, 0.042), 'v', 'high Z'),
                 ('24a', 'Fe', 'Fe3', (0.036, -0.146, 1.386), 'v', 'low Z'),
                 ('24b', 'Fe', 'Fe3', (0.301, -0.259, 1.367), 'v', 'int Z'),
                 ('24c', 'Fe', 'Fe3', (-1.377, 1.606, 1.045), 'v', 'high Z'),
                 ('20a', 'S', 'S2+S3', (0.121, 0.511, 0.161), 'v', 'low Z'),
                 ('20b', 'S', 'S2+S3', (0.155, 0.849, 0.062), 'v', 'int Z'),
                 ('20c', 'S', 'S2+S3', (0.178, 0.610, 0.153), 'v', 'high Z'),
                 ('23a', 'Ar', 'Ar3+Ar4', (0.158, 0.958, 0.004), 'v', 'low Z'),
                 ('23b', 'Ar', 'Ar3+Ar4', (0.104, 0.980, 0.001), 'v', 'int Z'),
                 ('23c', 'Ar', 'Ar3+Ar4', (0.238, 0.931, 0.004), 'v', 'high Z')]

        for item in Ial06:
            key = 'Ial06_' + item[0]
            atom = 'abun["' + item[2] + '"]'
            icf = self._calcIal06(item[3], item[4])
            self.all_icfs[key] = {'elem': item[1], 'atom': atom, 'icf': icf, 'type': 'HII', 'comment': item[5]}

        # Quickest way to account for the special case of Eqs. 20 and 23
        for key in ['Ial06_20a', 'Ial06_20b', 'Ial06_20c']:
            self.all_icfs[key]['atom'] = '(abun["S2"] + abun["S3"])'
        for key in ['Ial06_23a', 'Ial06_23b', 'Ial06_23c']:
            self.all_icfs[key]['atom'] = '(abun["Ar3"] + abun["Ar4"])'


        self.all_icf_refs = {'direct':{'ref': 'Direct determination by summing observed ions',
                                       'url':''},
                             'TPP77': {'ref': 'Torres-Peimbert and Peimbert 1977, RMAA, 2, 181',
                                       'url': 'http://adsabs.harvard.edu/abs/1977RMxAA...2..181T'},
                             'PHCD07': {'ref': 'Perez-Montero, Haegele, Contini, and Diaz 2007, MNRAS, 381, 125',
                                        'url': 'http://adsabs.harvard.edu/abs/2007MNRAS.381..125P'},
                             'KB94': {'ref': 'Kinsburgh & Barlow 1994, MNRAS, 271, 257',
                                      'url': 'http://adsabs.harvard.edu/abs/1994MNRAS.271..257K'},
                             'KH01': {'ref': 'Kwitter & Henry 2001, ApJ, 562, 804',
                                      'url': 'http://adsabs.harvard.edu/abs/2001ApJ...562..804K'},
                             'ITL94': {'ref': 'Izotov, Thuan & Lipovetsky 1994, ApJ, 435, 647',
                                       'url': 'http://http://adsabs.harvard.edu/abs/1994ApJ...435..647I'},
                             'Ial06': {'ref': 'Izotov et al 2006, A&A, 448, 955',
                                       'url': 'http://adsabs.harvard.edu/abs/2006A%26A...448..955I'},
                             'PC69': {'ref': 'Peimbert & Costero 1969, BOTT, 5, 3',
                                      'url': 'http://adsabs.harvard.edu/abs/1969BOTT....5....3P'},
                             'S78': {'ref': 'Stasinska 1978, A&A, 66, 257',
                                     'url': 'http://adsabs.harvard.edu/abs/1978A%26A....66..257S'},
# Superseded by RR05
#                             'RR04': {'ref': 'Rodriguez & Rubin 2004, IAUS, 217, 188',
#                                      'url': 'http://adsabs.harvard.edu/abs/2004IAUS..217..188R'},
                             'RR05': {'ref': 'Rodriguez & Rubin 2005, ApJ, 626, 900',
                                      'url': 'http://adsabs.harvard.edu/abs/2005ApJ...626..900R'},
# Corrected with PTPR92
#                             'GRal04': {'ref': 'Garcia-Rojas et al 2004, ApJS, 153, 501',
#                                      'url': 'http://adsabs.harvard.edu/abs/2004ApJS..153..501G'},
                             'GKA07': {'ref': 'Girard, Koeppen and Acker 2007, A&A, 463, 265',
                                      'url': 'http://adsabs.harvard.edu/abs/2007A%26A...463..265G'},
                             'PTPR92': {'ref': 'Peimbert, Torres-Peimbert and Ruiz 1992, RMAA, 24, 155',
                                        'url': 'http://adsabs.harvard.edu/abs/1992RMxAA..24..155P'},
                             'Sal07': {'ref': 'Sharpee et al 2007, MNRAS, 659, 1265',
                                        'url': 'http://adsabs.harvard.edu/abs/2007ApJ...659.1265S'},
                             'DIMS14': {'ref': 'Delgado-Inglada, Morisset and Stasinska, 2014, MNRAS',
                                        'url':'http://arxiv.org/abs/1402.4852'}
                             }

    def _calcIal06(self, coeff, degree):
        """
        Compute the analytical expressions of the Ial06 paper

        """
        if degree == 'v':
            k1 = 'abun["O2"] / (abun["O2"] + abun["O3"])'
            k2 = '(abun["O2"] + abun["O3"]) / abun["O2"]'
        else:
            k1 = 'abun["O3"] / (abun["O2"] + abun["O3"])'
            k2 = '(abun["O2"] + abun["O3"]) / abun["O3"]'
        return '(' + str(coeff[0]) + ' * ' + k1 + ' + ' + str(coeff[1]) + ' + ' + str(coeff[2]) + ' * ' + k2 + ')'


    def _getAtomExp(self, label):
        """
        Clean the ionic factor expressions for display purposes

        """
        return self.all_icfs[label]['atom'].replace('abun["', '').replace('"]', '')


    def _getIcfExp(self, label):
        """
        Clean the icf expressions for display purposes

        """        
        return self.all_icfs[label]['icf'].replace('elem_abun["', '').replace('abun["', '').replace('"]', '')


    def getAvailableICFs(self, elem_list=ELEM_LIST, type_=['HII', 'PNe', 'All']):
        """ 
        Get a list of all the available ICFs for the specified elements. 
        Details can be obtained by invoking getReference('label') and getExpression('label') or printAllICFs()

        Parameters:
            - elem_list    selected element or list of selected elements (default: all PyNeb elements)
            - type_         dbject class to which the icf is appliable (e.g. "PNe", "HII"; default: both)

        Usage:

        icf=pn.ICF()
        icf.getAvailableICFs()
        icf.getAvailableICFs('S')
        icf.getAvailableICFs('S', type_='HII')

        """        
        if type(type_) == type(''):
            type_ = [type_] 
        if elem_list.__class__ is str:
            elem_list = [elem_list]
        icf_dict = {}
        for elem in elem_list:
            # Each element is associated to an icf_list which holds all the icfs for that element 
            icf_list = []
            for key in self.all_icfs.keys():
                if (self.all_icfs[key]['elem'] == elem):
                    if self.all_icfs[key]['type'] in type_:
                        icf_list.append(key)
            if len(icf_list) > 0:
                icf_dict[elem] = icf_list        
        return icf_dict


    def printAllICFs(self, type_=['HII', 'PNe', 'All']):
        """ 
        Print a list of all the available ICFs. Details can be obtained by 
            invoking getReference('label') and getExpression('label')

        Parameters:
            - type_    object class to which the icf is appliable (e.g. "PNe", "HII"; default: both)

        """
        if type(type_) == type(''):
            type_ = [type_] 
        for label in self.all_icfs:
            if self.all_icfs[label]['type'] in type_:
                print(label + ': elem = ' + self.all_icfs[label]['elem'] + '; atom = ' + 
                      self._getAtomExp(label) + '; type = ' + self.all_icfs[label]['type'])


    def addICF(self, label, elem, atom, icf, type_='All', comment='', ref=None, url=None):
        """
        Add a new icf

        Parameters:
            label:    a label which identifies the new ICF. The suggested format for the label is "R_E.N", 
                        where R is a reference to the paper, E to the equation in the paper and the optional 
                        key N is an indication of the higher ion need to compute the icf.  
            elem:     element whose abundance is computed
            atom:     ion or ions whose abundance is multiplied by the icf to get the elemenmt abundance
            icf:      the correcting expression
            type_:     object class to which the icf is appliable (e.g. "PNe", "HII")
            comment:  additional comment, relevant to icf usage
            ref:      bibliographic reference, if any
            url:      URL of the source paper, if any

        **Usage:**

            icf=pn.ICF()

            icf.addICF(label='TEST_1',
                        elem='Ne',
                        atom ='abun["Ne2"] + abun["Ne3"]',
                        icf='(abun["O2"] + abun["O3"]) / abun["O2"]',
                        type_='PNe',
                        comment='',
                        ref='PyNeb international conference, 2025',
                        url='http://www.iac.es')

        """
        if label in self.all_icfs:
            pn.log_.warn('{0} is already an entry of the ICF label dictionary'.format(label), calling=self.calling)
            return None
        else:
            self.all_icfs[label] = {'elem': elem,
                                    'atom': atom,
                                    'icf': icf,
                                    'type': type_,
                                    'comment': comment}
            paper = label.split('_')[0]
            self.all_icf_refs[paper] = {'ref': ref, 'url': url}


    def delICF(self, label):
        """Delete an existing icf (only for current session)

        Parameters:
            label:    the label which identifies the new ICF. 

        **Usage:**

            icf=pn.ICF()

            icf.delICF(label='TEST_1')

        """
        del self.all_icfs[label]


    def printInfo(self, label, filter='licores'): 
        """ 
        Return complete information on the required icf or paper

        Parameters:
            label (str):    label of selected ICF recipe or paper
            filter (str):   string with initials of required fields (substring of 'licores'; all by default)   

        **Usage:**

            icf=pn.ICF()

            icf.printInfo('Ial06_20a')

        """        
        for item in self.all_icfs:
            if (label in item):
                print('------------------------------------------------------------------------')
                if ('l' in filter): print('Label:', item)
                if ('e' in filter): print('Element:', self.all_icfs[item]['elem'])
                if ('r' in filter): print('Required ions:', self._getAtomExp(item))
                if ('i' in filter): print('ICF expression:', self._getIcfExp(item))
                if ('o' in filter): print('Object class:', self.all_icfs[item]['type'])
                if ('c' in filter): print('Comments:', self.all_icfs[item]['comment'])
                if ('s' in filter): print('Source:', self.getReference(item))


    def getReference(self, label): 
        """ Return the reference of the selected ICF recipe 

        Parameters:
            label (str): label of selected ICF recipe or paper

        """        
        paper = label.split('_')[0]
        if paper[0] == 'm':
            paper1 = paper.split('-')[0][1:]
            paper2 = paper.split('-')[1]
            mixed = self.all_icf_refs[paper1]['ref'] + ' using an abundance based on ' + self.all_icf_refs[paper2]['ref']
            return mixed
        else:
            return self.all_icf_refs[paper]['ref']


    def getURL(self, label): 
        """ Return the ADS URL of the selected ICF recipe 

        Parameters:
            label (str): label of selected ICF recipe or paper

        """        
        paper = label.split('_')[0]
        if paper[0] == 'm':
            paper1 = paper.split('-')[0][1:]
            paper2 = paper.split('-')[1]
            mixed = self.all_icf_refs[paper1]['url'] + ' using an abundance based on ' + self.all_icf_refs[paper2]['url']
            return mixed
        else:
            return self.all_icf_refs[paper]['url']


    def getExpression(self, label): 
        """ 
        Return the analytical expression of the selected ICF 

        Parameters:
            label(str) label of selected ICF expression

        """

        elem = self.all_icfs[label]['elem']
        atom = self._getAtomExp(label)
        icf_factor = self._getIcfExp(label)
        if icf_factor != '1':
            return elem + " = (" + atom + ") * " + icf_factor
        else:
            return elem + " = " + atom


    def getType(self, label): 
        """ 
        Return the kind of object for which the selected ICF is suitable. 

        Parameters:
            label(str): label of selected ICF expression

        """
        return self.all_icfs[label]['type']


    def getComment(self, label): 
        """ 
        Return the comment associated to the selected ICF. 

        Parameters:
            label(str): label of selected ICF expression

        """
        return self.all_icfs[label]['comment']

    def getElemAbundance(self, atom_abun, icf_list=[], icf_family=None, absentIon=np.nan, use_coll=True,
                         use_MC=False):
        """
        Compute elemental abundances from ionic abundances. The complete iventory is printed through pn.ICF().printAllICFs().
        See the ICF class for more details.
        Store the result in ICF.elem_abund

        Parameters: 
           atom_abun:    a dictionary of ionic abundances
           icf_list:     a list of selected ICFs (default: all)
           icf_family:   a string common to all the icf one want to use, e.g. "DIMS14"
           use_coll:     In case both collision lines and recombination lines abundances exists:
                           if True (default), use collision line ionic abundance, if false use recombination ones
           use_MC:       If True and if the ICF definition includes error informations, the ICF will be multiplied
                           by some factor taking into account the error.
        **Usage:**

            atom_abun = {'O2': 0.001, 'O3': 0.002, 'Ne3': 1.2e-5}

            getElemAbundance(atom_abun)

        """
        if type(icf_list) == type(''):
            icf_list = [icf_list]
        # List of all existing atoms. Necessary to initialize the ionic abundance dictionary
        if icf_family is not None:
            icf_list = [icf for icf in self.all_icfs.keys() if icf_family in icf]
        atom_list = list(pn.LINE_LABEL_LIST.keys())
        for elem in ('He2', 'He3'):
            if elem not in atom_list:
                atom_list.append(elem)

        # Initialize the ionic abundances so that the code does not crash when a specific abundance is invoked
        # TODO : Check that the same ion is not present as collisional and recombination !!
        abun = {}
        for atom in atom_list:
            # Set those abundances which are different from 0. These determine which ICFs can be computed        
            if atom in atom_abun:
                if atom == 'He1r':
                    abun['He2'] = atom_abun[atom]
                elif atom == 'He2r':
                    abun['He3'] = atom_abun[atom]
                else:
                    abun[atom] = atom_abun[atom]
                # if atom[-1] == 'r':
                #     elem, spec = parseAtom(atom[:-1])
                #     atomc = elem + str(int(spec)+1)
                #     if (not use_coll) or (atomc not in atom_abun):
                #         abun[atomc] = atom_abun[atom]
                #         print('1',atom, atomc)
                #     else:
                #         print('2',atom, atomc)
                # else:
                #     elem, spec = parseAtom(atom)
                #     atomr = elem + str(int(spec)-1) + 'r'
                #     if use_coll or (atomr not in atom_abun):
                #         abun[atom] = atom_abun[atom]
                #         print('3',atom, atom)
                #     else:
                #         print('4',atom, atom)
            else:
                abun[atom] = absentIon
        self.abun = abun
        # Initialize the lists of elemental abundances
        self.icf_value = {}
        elem_abun = {}
        # Compute either all the available ICFs or just a selected subset of them
        if len(icf_list) == 0:
            icf_list = self.all_icfs.keys()

        do_one_more_pass = True
        i_pass = 0
        while (do_one_more_pass and (i_pass < self._max_pass)):
            do_one_more_pass = False
            i_pass += 1
            for icf_label in icf_list:
                atom = self.all_icfs[icf_label]['atom']
                try:
                    atom_value = eval(atom)
                except:
                    pn.log_.warn('Unable to eval {}'.format(atom), calling=self.calling + '.getElemAbundance')
                if self.all_icfs[icf_label]['elem'] is not None:
                    pn.log_.debug('Doing {}'.format(icf_label), calling='ICF')
                    this_icf = self.all_icfs[icf_label]
                    elem = this_icf['elem']
                    try:
                        icf_value = eval(this_icf['icf'])
                        self.icf_value[icf_label] = icf_value
                        if use_MC and 'low_error' in this_icf:
                            try:
                                low_error = eval(this_icf['low_error'])
                            except:
                                pn.log_.warn('low error {0} cannot be evaluated for {1}'.format(this_icf['low_error'], icf_label))
                            try:
                                up_error = eval(this_icf['up_error'])
                            except:
                                pn.log_.warn('up error {0} cannot be evaluated for {1}'.format(this_icf['up_error'], icf_label))
                            try:
                                if np.size(low_error) == 1:
                                    D_icf_MC = np.random.uniform(-low_error, up_error, np.size(atom_value))
                                else:
                                    D_icf_MC = np.random.uniform(-low_error, up_error)
                                D_icf_MC[0] = 0.0
                            except:
                                pn.log_.warn('MC not working for ICF {}'.format(this_icf['icf']), calling=self.calling)
#                             print '--------IN---------'
#                             print this_icf['icf']
#                             print this_icf['low_error']
#                             print 'low_error'
#                             print low_error
#                             print this_icf['up_error']
#                             print 'up_error'
#                             print up_error
#                             if icf_label == 'DIMS14_36':
#                                 print 'icf_MC for {}'.format(icf_label)
#                                 print Dicf_MC
#                                 print 'icf_value'                            
#                                 print icf_value
                            icf_value = icf_value + D_icf_MC
                            pn.log_.message('Using MC for ICF {}'.format(icf_label))
#                             print 'icf_value2'                            
#                             print icf_value
#                             print '---------OUT---------'
                        elem_abun[icf_label] = atom_value * icf_value
                    except:
                        do_one_more_pass = True
                        if i_pass == self._max_pass:
                            pn.log_.warn('{0} cannot be evaluated for {1}'.format(this_icf['icf'], icf_label),
                                         calling=self.calling)
                else:
                    pn.log_.debug('{} not present'.format(icf_label), calling='ICF')
        self.elem_abun = elem_abun
        return self.elem_abun
#            elem_abun[icf.all_icfs[icf_ref]['elem']] = np.log10(elem_abun_dic[icf_ref])+12

    def __getElemAbundanceFromStategy(self, atom_abun, strategy):
        """
        Return the elemental abundances in a dictionary, computed by applying a given strategy.

        Parameters:
            atom_abund: dictionary of ionic abundances
            strategy: dictionary of the ICF to apply in order to obtain elemental abundances.
                example: strategy = {'He':['direct_He.2', 'PTPR92_21'], 
                                   'N': 'KB94_A1.10'}

        **Usage:**
            final_abund = icf.getElemAbundanceFromStrategy(ion_ab_dic, icf_strategies)
        """

        # the following is great, as it only computes the abundances from a subset, but
        # it does not work when an ICF requires an ab undance not in the list!
        icf_list = []
        for elem in strategy:
            if type(strategy[elem]) == type(''):
                icf_list.append(strategy[elem])
            else:
                for meth in strategy[elem]:
                    icf_list.append(meth)

        allAbund = self.getElemAbundance(atom_abun, icf_list, absentIon=np.nan)
        elemAbund = {}
        for elem in strategy:
            if type(strategy[elem]) == type(''):
                elemAbund[elem] = allAbund[strategy[elem]]
            else:
                elemAbund[elem] = allAbund[strategy[elem][0]]
                for meth in strategy[elem][1::]:
                    tt = np.isnan(elemAbund[elem])
                    pn.log_.message('Computing {0} abundance using {1} for {2} observations.'.format(elem,
                                                                                                     meth,
                                                                                                     tt.sum()),
                                    calling=self.calling)
                    elemAbund[elem][tt] = allAbund[meth][tt]
        return elemAbund


    def test(self):
        """ 
        Test function for the ICF class 

        """
        label1 = 'Ial06_18a'
        label2 = 'TPP77_14'
        label3 = 'KH01_4b'
        label4 = 'PHCD07_13'
        print('All the available ICFs, listed by element:')
        print(self.getAvailableICFs())
        print('\nAll the available ICFs, with some detail:')
        print(self.printAllICFs())
        print('\nAll the available ICFs for S and Ne:' )  
        print(self.getAvailableICFs(['S', 'Ne']))
        print('\nAnalytical expression for ' + label1 + ':')
        print(self.getExpression(label1))
        print('\nBibliographic reference for ' + label2 + ':')
        print(self.getReference(label2))
        print('\nURL for ' + label3 + ':')
        print(self.getURL(label3))
        print('\nType of object to which ' + label4 + ' can be applied:')
        print(self.getType(label4))
        print('\nAdditional details of ' + label4 + ':')
        print(self.getComment(label4) )

        atom_abun = {}
        atom_abun['O2'] = 0.001
        atom_abun['O3'] = 0.002
        atom_abun['Ne2'] = 1.0e-4
        atom_abun['Ne3'] = 1.2e-5
        atom_abun['Ar3'] = 4.e-6
        atom_abun['Ar4'] = 1.e-6
        atom_abun['N2'] = 1.e-4
        atom_abun['He2'] = 1.e-1
        atom_abun['He3'] = 1.e-2
        atom_abun['He2'] = 1.e-1
        atom_abun['Cl3'] = 4.e-6
        atom_abun['Cl4'] = 1.e-6
        atom_abun['Ar3'] = 6.e-5
        atom_abun['Ar4'] = 5.e-7
        atom_abun['S3'] = 1.e-5

        self.getElemAbundance(atom_abun, icf_list=[label4])

__getElemAbundanceFromStategy(atom_abun, strategy)

Return the elemental abundances in a dictionary, computed by applying a given strategy.

Parameters:

Name Type Description Default
atom_abund

dictionary of ionic abundances

required
strategy

dictionary of the ICF to apply in order to obtain elemental abundances. example: strategy = {'He':['direct_He.2', 'PTPR92_21'], 'N': 'KB94_A1.10'}

required

Usage: final_abund = icf.getElemAbundanceFromStrategy(ion_ab_dic, icf_strategies)

Source code in pyneb/core/icf.py
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
def __getElemAbundanceFromStategy(self, atom_abun, strategy):
    """
    Return the elemental abundances in a dictionary, computed by applying a given strategy.

    Parameters:
        atom_abund: dictionary of ionic abundances
        strategy: dictionary of the ICF to apply in order to obtain elemental abundances.
            example: strategy = {'He':['direct_He.2', 'PTPR92_21'], 
                               'N': 'KB94_A1.10'}

    **Usage:**
        final_abund = icf.getElemAbundanceFromStrategy(ion_ab_dic, icf_strategies)
    """

    # the following is great, as it only computes the abundances from a subset, but
    # it does not work when an ICF requires an ab undance not in the list!
    icf_list = []
    for elem in strategy:
        if type(strategy[elem]) == type(''):
            icf_list.append(strategy[elem])
        else:
            for meth in strategy[elem]:
                icf_list.append(meth)

    allAbund = self.getElemAbundance(atom_abun, icf_list, absentIon=np.nan)
    elemAbund = {}
    for elem in strategy:
        if type(strategy[elem]) == type(''):
            elemAbund[elem] = allAbund[strategy[elem]]
        else:
            elemAbund[elem] = allAbund[strategy[elem][0]]
            for meth in strategy[elem][1::]:
                tt = np.isnan(elemAbund[elem])
                pn.log_.message('Computing {0} abundance using {1} for {2} observations.'.format(elem,
                                                                                                 meth,
                                                                                                 tt.sum()),
                                calling=self.calling)
                elemAbund[elem][tt] = allAbund[meth][tt]
    return elemAbund

__init__()

ICF tool. No parameters for the instantiation.

Source code in pyneb/core/icf.py
 9
10
11
12
13
14
15
16
17
18
19
def __init__(self):
    """
    ICF tool.
    No parameters for the instantiation.
    """

    self.log_ = pn.log_ 
    self.calling = 'ICF'

    self._init_all_icfs()
    self._max_pass = 3

addICF(label, elem, atom, icf, type_='All', comment='', ref=None, url=None)

Add a new icf

Parameters:

Name Type Description Default
label

a label which identifies the new ICF. The suggested format for the label is "R_E.N", where R is a reference to the paper, E to the equation in the paper and the optional key N is an indication of the higher ion need to compute the icf.

required
elem

element whose abundance is computed

required
atom

ion or ions whose abundance is multiplied by the icf to get the elemenmt abundance

required
icf

the correcting expression

required
type_

object class to which the icf is appliable (e.g. "PNe", "HII")

'All'
comment

additional comment, relevant to icf usage

''
ref

bibliographic reference, if any

None
url

URL of the source paper, if any

None

Usage:

icf=pn.ICF()

icf.addICF(label='TEST_1',
            elem='Ne',
            atom ='abun["Ne2"] + abun["Ne3"]',
            icf='(abun["O2"] + abun["O3"]) / abun["O2"]',
            type_='PNe',
            comment='',
            ref='PyNeb international conference, 2025',
            url='http://www.iac.es')
Source code in pyneb/core/icf.py
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
def addICF(self, label, elem, atom, icf, type_='All', comment='', ref=None, url=None):
    """
    Add a new icf

    Parameters:
        label:    a label which identifies the new ICF. The suggested format for the label is "R_E.N", 
                    where R is a reference to the paper, E to the equation in the paper and the optional 
                    key N is an indication of the higher ion need to compute the icf.  
        elem:     element whose abundance is computed
        atom:     ion or ions whose abundance is multiplied by the icf to get the elemenmt abundance
        icf:      the correcting expression
        type_:     object class to which the icf is appliable (e.g. "PNe", "HII")
        comment:  additional comment, relevant to icf usage
        ref:      bibliographic reference, if any
        url:      URL of the source paper, if any

    **Usage:**

        icf=pn.ICF()

        icf.addICF(label='TEST_1',
                    elem='Ne',
                    atom ='abun["Ne2"] + abun["Ne3"]',
                    icf='(abun["O2"] + abun["O3"]) / abun["O2"]',
                    type_='PNe',
                    comment='',
                    ref='PyNeb international conference, 2025',
                    url='http://www.iac.es')

    """
    if label in self.all_icfs:
        pn.log_.warn('{0} is already an entry of the ICF label dictionary'.format(label), calling=self.calling)
        return None
    else:
        self.all_icfs[label] = {'elem': elem,
                                'atom': atom,
                                'icf': icf,
                                'type': type_,
                                'comment': comment}
        paper = label.split('_')[0]
        self.all_icf_refs[paper] = {'ref': ref, 'url': url}

delICF(label)

Delete an existing icf (only for current session)

Parameters:

Name Type Description Default
label

the label which identifies the new ICF.

required

Usage:

icf=pn.ICF()

icf.delICF(label='TEST_1')
Source code in pyneb/core/icf.py
846
847
848
849
850
851
852
853
854
855
856
857
858
859
def delICF(self, label):
    """Delete an existing icf (only for current session)

    Parameters:
        label:    the label which identifies the new ICF. 

    **Usage:**

        icf=pn.ICF()

        icf.delICF(label='TEST_1')

    """
    del self.all_icfs[label]

getAvailableICFs(elem_list=ELEM_LIST, type_=['HII', 'PNe', 'All'])

Get a list of all the available ICFs for the specified elements. Details can be obtained by invoking getReference('label') and getExpression('label') or printAllICFs()

Parameters:

Name Type Description Default
- elem_list selected element or list of selected elements (default

all PyNeb elements)

required
- type_ dbject class to which the icf is appliable (e.g. "PNe", "HII"; default

both)

required

Usage:

icf=pn.ICF() icf.getAvailableICFs() icf.getAvailableICFs('S') icf.getAvailableICFs('S', type_='HII')

Source code in pyneb/core/icf.py
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
def getAvailableICFs(self, elem_list=ELEM_LIST, type_=['HII', 'PNe', 'All']):
    """ 
    Get a list of all the available ICFs for the specified elements. 
    Details can be obtained by invoking getReference('label') and getExpression('label') or printAllICFs()

    Parameters:
        - elem_list    selected element or list of selected elements (default: all PyNeb elements)
        - type_         dbject class to which the icf is appliable (e.g. "PNe", "HII"; default: both)

    Usage:

    icf=pn.ICF()
    icf.getAvailableICFs()
    icf.getAvailableICFs('S')
    icf.getAvailableICFs('S', type_='HII')

    """        
    if type(type_) == type(''):
        type_ = [type_] 
    if elem_list.__class__ is str:
        elem_list = [elem_list]
    icf_dict = {}
    for elem in elem_list:
        # Each element is associated to an icf_list which holds all the icfs for that element 
        icf_list = []
        for key in self.all_icfs.keys():
            if (self.all_icfs[key]['elem'] == elem):
                if self.all_icfs[key]['type'] in type_:
                    icf_list.append(key)
        if len(icf_list) > 0:
            icf_dict[elem] = icf_list        
    return icf_dict

getComment(label)

Return the comment associated to the selected ICF.

Parameters:

Name Type Description Default
label(str)

label of selected ICF expression

required
Source code in pyneb/core/icf.py
952
953
954
955
956
957
958
959
960
def getComment(self, label): 
    """ 
    Return the comment associated to the selected ICF. 

    Parameters:
        label(str): label of selected ICF expression

    """
    return self.all_icfs[label]['comment']

getElemAbundance(atom_abun, icf_list=[], icf_family=None, absentIon=np.nan, use_coll=True, use_MC=False)

Compute elemental abundances from ionic abundances. The complete iventory is printed through pn.ICF().printAllICFs(). See the ICF class for more details. Store the result in ICF.elem_abund

Parameters:

Name Type Description Default
atom_abun

a dictionary of ionic abundances

required
icf_list

a list of selected ICFs (default: all)

[]
icf_family

a string common to all the icf one want to use, e.g. "DIMS14"

None
use_coll

In case both collision lines and recombination lines abundances exists: if True (default), use collision line ionic abundance, if false use recombination ones

True
use_MC

If True and if the ICF definition includes error informations, the ICF will be multiplied by some factor taking into account the error.

False

Usage:

atom_abun = {'O2': 0.001, 'O3': 0.002, 'Ne3': 1.2e-5}

getElemAbundance(atom_abun)
Source code in pyneb/core/icf.py
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    def getElemAbundance(self, atom_abun, icf_list=[], icf_family=None, absentIon=np.nan, use_coll=True,
                         use_MC=False):
        """
        Compute elemental abundances from ionic abundances. The complete iventory is printed through pn.ICF().printAllICFs().
        See the ICF class for more details.
        Store the result in ICF.elem_abund

        Parameters: 
           atom_abun:    a dictionary of ionic abundances
           icf_list:     a list of selected ICFs (default: all)
           icf_family:   a string common to all the icf one want to use, e.g. "DIMS14"
           use_coll:     In case both collision lines and recombination lines abundances exists:
                           if True (default), use collision line ionic abundance, if false use recombination ones
           use_MC:       If True and if the ICF definition includes error informations, the ICF will be multiplied
                           by some factor taking into account the error.
        **Usage:**

            atom_abun = {'O2': 0.001, 'O3': 0.002, 'Ne3': 1.2e-5}

            getElemAbundance(atom_abun)

        """
        if type(icf_list) == type(''):
            icf_list = [icf_list]
        # List of all existing atoms. Necessary to initialize the ionic abundance dictionary
        if icf_family is not None:
            icf_list = [icf for icf in self.all_icfs.keys() if icf_family in icf]
        atom_list = list(pn.LINE_LABEL_LIST.keys())
        for elem in ('He2', 'He3'):
            if elem not in atom_list:
                atom_list.append(elem)

        # Initialize the ionic abundances so that the code does not crash when a specific abundance is invoked
        # TODO : Check that the same ion is not present as collisional and recombination !!
        abun = {}
        for atom in atom_list:
            # Set those abundances which are different from 0. These determine which ICFs can be computed        
            if atom in atom_abun:
                if atom == 'He1r':
                    abun['He2'] = atom_abun[atom]
                elif atom == 'He2r':
                    abun['He3'] = atom_abun[atom]
                else:
                    abun[atom] = atom_abun[atom]
                # if atom[-1] == 'r':
                #     elem, spec = parseAtom(atom[:-1])
                #     atomc = elem + str(int(spec)+1)
                #     if (not use_coll) or (atomc not in atom_abun):
                #         abun[atomc] = atom_abun[atom]
                #         print('1',atom, atomc)
                #     else:
                #         print('2',atom, atomc)
                # else:
                #     elem, spec = parseAtom(atom)
                #     atomr = elem + str(int(spec)-1) + 'r'
                #     if use_coll or (atomr not in atom_abun):
                #         abun[atom] = atom_abun[atom]
                #         print('3',atom, atom)
                #     else:
                #         print('4',atom, atom)
            else:
                abun[atom] = absentIon
        self.abun = abun
        # Initialize the lists of elemental abundances
        self.icf_value = {}
        elem_abun = {}
        # Compute either all the available ICFs or just a selected subset of them
        if len(icf_list) == 0:
            icf_list = self.all_icfs.keys()

        do_one_more_pass = True
        i_pass = 0
        while (do_one_more_pass and (i_pass < self._max_pass)):
            do_one_more_pass = False
            i_pass += 1
            for icf_label in icf_list:
                atom = self.all_icfs[icf_label]['atom']
                try:
                    atom_value = eval(atom)
                except:
                    pn.log_.warn('Unable to eval {}'.format(atom), calling=self.calling + '.getElemAbundance')
                if self.all_icfs[icf_label]['elem'] is not None:
                    pn.log_.debug('Doing {}'.format(icf_label), calling='ICF')
                    this_icf = self.all_icfs[icf_label]
                    elem = this_icf['elem']
                    try:
                        icf_value = eval(this_icf['icf'])
                        self.icf_value[icf_label] = icf_value
                        if use_MC and 'low_error' in this_icf:
                            try:
                                low_error = eval(this_icf['low_error'])
                            except:
                                pn.log_.warn('low error {0} cannot be evaluated for {1}'.format(this_icf['low_error'], icf_label))
                            try:
                                up_error = eval(this_icf['up_error'])
                            except:
                                pn.log_.warn('up error {0} cannot be evaluated for {1}'.format(this_icf['up_error'], icf_label))
                            try:
                                if np.size(low_error) == 1:
                                    D_icf_MC = np.random.uniform(-low_error, up_error, np.size(atom_value))
                                else:
                                    D_icf_MC = np.random.uniform(-low_error, up_error)
                                D_icf_MC[0] = 0.0
                            except:
                                pn.log_.warn('MC not working for ICF {}'.format(this_icf['icf']), calling=self.calling)
#                             print '--------IN---------'
#                             print this_icf['icf']
#                             print this_icf['low_error']
#                             print 'low_error'
#                             print low_error
#                             print this_icf['up_error']
#                             print 'up_error'
#                             print up_error
#                             if icf_label == 'DIMS14_36':
#                                 print 'icf_MC for {}'.format(icf_label)
#                                 print Dicf_MC
#                                 print 'icf_value'                            
#                                 print icf_value
                            icf_value = icf_value + D_icf_MC
                            pn.log_.message('Using MC for ICF {}'.format(icf_label))
#                             print 'icf_value2'                            
#                             print icf_value
#                             print '---------OUT---------'
                        elem_abun[icf_label] = atom_value * icf_value
                    except:
                        do_one_more_pass = True
                        if i_pass == self._max_pass:
                            pn.log_.warn('{0} cannot be evaluated for {1}'.format(this_icf['icf'], icf_label),
                                         calling=self.calling)
                else:
                    pn.log_.debug('{} not present'.format(icf_label), calling='ICF')
        self.elem_abun = elem_abun
        return self.elem_abun

getExpression(label)

Return the analytical expression of the selected ICF

Source code in pyneb/core/icf.py
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
def getExpression(self, label): 
    """ 
    Return the analytical expression of the selected ICF 

    Parameters:
        label(str) label of selected ICF expression

    """

    elem = self.all_icfs[label]['elem']
    atom = self._getAtomExp(label)
    icf_factor = self._getIcfExp(label)
    if icf_factor != '1':
        return elem + " = (" + atom + ") * " + icf_factor
    else:
        return elem + " = " + atom

getReference(label)

Return the reference of the selected ICF recipe

Parameters:

Name Type Description Default
label str

label of selected ICF recipe or paper

required
Source code in pyneb/core/icf.py
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
def getReference(self, label): 
    """ Return the reference of the selected ICF recipe 

    Parameters:
        label (str): label of selected ICF recipe or paper

    """        
    paper = label.split('_')[0]
    if paper[0] == 'm':
        paper1 = paper.split('-')[0][1:]
        paper2 = paper.split('-')[1]
        mixed = self.all_icf_refs[paper1]['ref'] + ' using an abundance based on ' + self.all_icf_refs[paper2]['ref']
        return mixed
    else:
        return self.all_icf_refs[paper]['ref']

getType(label)

Return the kind of object for which the selected ICF is suitable.

Parameters:

Name Type Description Default
label(str)

label of selected ICF expression

required
Source code in pyneb/core/icf.py
941
942
943
944
945
946
947
948
949
def getType(self, label): 
    """ 
    Return the kind of object for which the selected ICF is suitable. 

    Parameters:
        label(str): label of selected ICF expression

    """
    return self.all_icfs[label]['type']

getURL(label)

Return the ADS URL of the selected ICF recipe

Parameters:

Name Type Description Default
label str

label of selected ICF recipe or paper

required
Source code in pyneb/core/icf.py
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
def getURL(self, label): 
    """ Return the ADS URL of the selected ICF recipe 

    Parameters:
        label (str): label of selected ICF recipe or paper

    """        
    paper = label.split('_')[0]
    if paper[0] == 'm':
        paper1 = paper.split('-')[0][1:]
        paper2 = paper.split('-')[1]
        mixed = self.all_icf_refs[paper1]['url'] + ' using an abundance based on ' + self.all_icf_refs[paper2]['url']
        return mixed
    else:
        return self.all_icf_refs[paper]['url']

printAllICFs(type_=['HII', 'PNe', 'All'])

Print a list of all the available ICFs. Details can be obtained by invoking getReference('label') and getExpression('label')

Parameters:

Name Type Description Default
- type_ object class to which the icf is appliable (e.g. "PNe", "HII"; default

both)

required
Source code in pyneb/core/icf.py
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
def printAllICFs(self, type_=['HII', 'PNe', 'All']):
    """ 
    Print a list of all the available ICFs. Details can be obtained by 
        invoking getReference('label') and getExpression('label')

    Parameters:
        - type_    object class to which the icf is appliable (e.g. "PNe", "HII"; default: both)

    """
    if type(type_) == type(''):
        type_ = [type_] 
    for label in self.all_icfs:
        if self.all_icfs[label]['type'] in type_:
            print(label + ': elem = ' + self.all_icfs[label]['elem'] + '; atom = ' + 
                  self._getAtomExp(label) + '; type = ' + self.all_icfs[label]['type'])

printInfo(label, filter='licores')

Return complete information on the required icf or paper

Parameters:

Name Type Description Default
label str

label of selected ICF recipe or paper

required
filter str

string with initials of required fields (substring of 'licores'; all by default)

'licores'

Usage:

icf=pn.ICF()

icf.printInfo('Ial06_20a')
Source code in pyneb/core/icf.py
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
def printInfo(self, label, filter='licores'): 
    """ 
    Return complete information on the required icf or paper

    Parameters:
        label (str):    label of selected ICF recipe or paper
        filter (str):   string with initials of required fields (substring of 'licores'; all by default)   

    **Usage:**

        icf=pn.ICF()

        icf.printInfo('Ial06_20a')

    """        
    for item in self.all_icfs:
        if (label in item):
            print('------------------------------------------------------------------------')
            if ('l' in filter): print('Label:', item)
            if ('e' in filter): print('Element:', self.all_icfs[item]['elem'])
            if ('r' in filter): print('Required ions:', self._getAtomExp(item))
            if ('i' in filter): print('ICF expression:', self._getIcfExp(item))
            if ('o' in filter): print('Object class:', self.all_icfs[item]['type'])
            if ('c' in filter): print('Comments:', self.all_icfs[item]['comment'])
            if ('s' in filter): print('Source:', self.getReference(item))

test()

Test function for the ICF class

Source code in pyneb/core/icf.py
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
def test(self):
    """ 
    Test function for the ICF class 

    """
    label1 = 'Ial06_18a'
    label2 = 'TPP77_14'
    label3 = 'KH01_4b'
    label4 = 'PHCD07_13'
    print('All the available ICFs, listed by element:')
    print(self.getAvailableICFs())
    print('\nAll the available ICFs, with some detail:')
    print(self.printAllICFs())
    print('\nAll the available ICFs for S and Ne:' )  
    print(self.getAvailableICFs(['S', 'Ne']))
    print('\nAnalytical expression for ' + label1 + ':')
    print(self.getExpression(label1))
    print('\nBibliographic reference for ' + label2 + ':')
    print(self.getReference(label2))
    print('\nURL for ' + label3 + ':')
    print(self.getURL(label3))
    print('\nType of object to which ' + label4 + ' can be applied:')
    print(self.getType(label4))
    print('\nAdditional details of ' + label4 + ':')
    print(self.getComment(label4) )

    atom_abun = {}
    atom_abun['O2'] = 0.001
    atom_abun['O3'] = 0.002
    atom_abun['Ne2'] = 1.0e-4
    atom_abun['Ne3'] = 1.2e-5
    atom_abun['Ar3'] = 4.e-6
    atom_abun['Ar4'] = 1.e-6
    atom_abun['N2'] = 1.e-4
    atom_abun['He2'] = 1.e-1
    atom_abun['He3'] = 1.e-2
    atom_abun['He2'] = 1.e-1
    atom_abun['Cl3'] = 4.e-6
    atom_abun['Cl4'] = 1.e-6
    atom_abun['Ar3'] = 6.e-5
    atom_abun['Ar4'] = 5.e-7
    atom_abun['S3'] = 1.e-5

    self.getElemAbundance(atom_abun, icf_list=[label4])