PyNeb  1.1.2
PyNeb Reference Manua
pyneb.utils.physics Namespace Reference

Classes

class  CST
 

Functions

def gsFromAtom
 
def make_gsconf_file
 
def airtovac (wave)
 
def vactoair (wave)
 

Variables

dictionary Z = {}
 
dictionary Z_inv = {}
 
dictionary IP = {}
 
dictionary sym2name
 
dictionary gsLevelDict
 
dictionary _predefinedDataFileDict = {}
 

Function Documentation

def pyneb.utils.physics.airtovac (   wave)
Convert air wavelengths to vacuum wavelengths
Parameters
----------
wave: float, array
The wavelength in air [Angstrom]
Returns
-------
Wavelength: array
Wavelength in vacuum [Angstrom]
Notes
-----

.. note:: This function was ported from the IDL Astronomy User's Library.
:IDL - Documentation:
NAME:
AIRTOVAC
PURPOSE:
Convert air wavelengths to vacuum wavelengths
EXPLANATION:
Wavelengths are corrected for the index of refraction of air under
standard conditions. Wavelength values below 2000 A will not be
altered. Uses the IAU standard for conversion given in Morton
(1991 Ap.J. Suppl. 77, 119)
CALLING SEQUENCE:
AIRTOVAC, WAVE
INPUT/OUTPUT:
WAVE - Wavelength in Angstroms, scalar or vector
WAVE should be input as air wavelength(s), it will be
returned as vacuum wavelength(s). WAVE is always converted to
double precision upon return.
EXAMPLE:
If the air wavelength is W = 6056.125 (a Krypton line), then
AIRTOVAC, W yields an vacuum wavelength of W = 6057.8019
METHOD:
See Morton (Ap. J. Suppl. 77, 119) for the formula used
REVISION HISTORY
Written W. Landsman November 1991
Converted to IDL V5.0 W. Landsman September 1997
def pyneb.utils.physics.gsFromAtom (   atom,
  verbose = False 
)
atom: eg 'O3' for O++
special_dict = {'Fe2': 'd7', 'Fe3': 'd6', 'Fe4': 'd5', 'Fe5': 'd4', 'Fe6': 'd3', 'Fe7': 'd2', 'Ni3': 'd8'
                }
if atom in special_dict:
    return special_dict[atom]
def pyneb.utils.physics.make_gsconf_file (   outfile = 'gsconfs.dat')
def pyneb.utils.physics.vactoair (   wave)
Convert vacuum wavelengths to air wavelengths

Parameters
----------
wave: float, array
The wavelength in vacuum [Angstrom]
Returns
-------
Wavelength: array,
Wavelength in air [Angstrom]
Notes
-----

.. note:: This function was ported from the IDL Astronomy User's Library.
:IDL - Documentation:

NAME:
VACTOAIR
PURPOSE:
Convert vacuum wavelengths to air wavelengths
EXPLANATION:
Corrects for the index of refraction of air under standard conditions.
Wavelength values below 2000 A will not be altered. Accurate to
about 0.005 A

CALLING SEQUENCE:
VACTOAIR, WAVE

INPUT/OUTPUT:
WAVE - Wavelength in Angstroms, scalar or vector
WAVE should be input as vacuum wavelength(s), it will be
returned as air wavelength(s). WAVE is always converted to
double precision

EXAMPLE:
If the vacuum wavelength is W = 2000, then

IDL> VACTOAIR, W

yields an air wavelength of W = 1999.353 Angstroms

METHOD:
An approximation to the 4th power of inverse wavenumber is used
See IUE Image Processing Manual Page 6-15.

REVISION HISTORY
Written, D. Lindler 1982
Documentation W. Landsman Feb. 1989
Converted to IDL V5.0 W. Landsman September 1997

Variable Documentation

dictionary _predefinedDataFileDict = {}
dictionary gsLevelDict
Initial value:
1 = {
2  'p1': ['$^2$P$_{1/2}$', '$^2$P$_{3/2}$', '$^4$P$_{1/2}$', '$^4$P$_{3/2}$', '$^4$P$_{5/2}$', '$^2$D$_{3/2}$', '$^2$D$_{5/2}$', '$^2$S$_{1/2}$'],
3  'p2': ['$^3$P$_0$', '$^3$P$_1$', '$^3$P$_2$', '$^1$D$_2$', '$^1$S$_0$', '$^5$S$_2$'],
4  'p3': ['$^4$S$_{3/2}$', '$^2$D$_{3/2}$', '$^2$D$_{5/2}$', '$^2$P$_{1/2}$', '$^2$P$_{3/2}$', '$^4$P$_{5/2}$', '$^4$P$_{3/2}$', '$^4$P$_{1/2}$'],
5  'p4': ['$^3$P$_0$', '$^3$P$_1$', '$^3$P$_2$', '$^1$D$_2$', '$^1$S$_0$'],
6  'p5': ['$^2$P$_{3/2}$', '$^2$P$_{1/2}$'],
7  's1': ['$^2$S$_{1/2}$', '$^2$P$_{1/2}$', '$^2$P$_{3/2}$'],
8  's2': ['$^1$S$_0$', '$^3$P$_0$', '$^3$P$_1$', '$^3$P$_2$', '$^1$P$_1$'],
9  'd2': ['$^3$F$_{2}$', '$^3$F$_{3}$', '$^3$F$_{4}$','$^1$D$_{2}$', '$^3$P$_{0}$', '$^3$P$_{1}$', '$^3$P$_{2}$', '$^1$G$_{4}$', '$^1$S$_{0}$'],
10  'd3': ['$^4$F$_{3/2}$', '$^4$F$_{5/2}$', '$^4$F$_{7/2}$','$^4$F$_{9/2}$', '$^4$P$_{1/2}$', '$^4$P$_{3/2}$', '$^4$P$_{5/2}$', '$^2$G$_{7/2}$', '$^2$G$_{9/2}$', '$^2$P$_{3/2}$', '$^2$P$_{1/2}$', '$^2$D2$_{5/2}$', '$^2$D2$_{3/2}$', '$^2$H$_{9/2}$', '$^2$H$_{11/2}$', '$^2$F$_{7/2}$', '$^2$F$_{5/2}$', '$^2$D1$_{5/2}$', '$^2$D1$_{3/2}$'],
11  'd6': ['$^5$D$_4$', '$^5$D$_3$', '$^5$D$_2$', '$^5$D$_1$', '$^5$D$_0$', '$^3$P2$_2$', '$^3$H$_6$'],
12  'd8': ['$3$F$_4$', '$^3$F$_3$', '$^3$F$_2$', '$^1$D$_2$', '$^3$P$_2$', '$^3$P2$_1$', '$^3$P$_0$']
13  }
dictionary IP = {}
dictionary sym2name
dictionary Z = {}
dictionary Z_inv = {}